We apologize for Proteopedia being slow to respond. For the past two years, a new implementation of Proteopedia has been being built. Soon, it will replace this 18-year old system. All existing content will be moved to the new system at a date that will be announced here.

Main Page

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 20: Line 20:
<tr style="font-size: 1.2em; text-align: center;">
<tr style="font-size: 1.2em; text-align: center;">
-
<td style="padding: 10px;background-color: #33ff7b">Other Selected Pages</td>
+
<td style="padding: 10px;background-color: #33ff7b">[[:Category:Featured in Education|Other Selected Pages]]</td>
-
<td style="padding: 10px;background-color: #dae4d9">More Art on Science</td>
+
<td style="padding: 10px;background-color: #dae4d9">[[:Category:Featured in Education|More Art on Science]]</td>
-
<td style="padding: 10px;background-color: #f1b840">Other Journals</td>
+
<td style="padding: 10px;background-color: #f1b840">[[:Category:Featured in Education|Other Journals]]</td>
-
<td style="padding: 10px;background-color: #79baff">More on Education</td>
+
<td style="padding: 10px;background-color: #79baff">[[:Category:Featured in Education|More on Education]]</td>
</tr>
</tr>

Revision as of 13:21, 18 October 2018

Because life has more than 2D, Proteopedia helps to understand relationships between structure and function. Proteopedia is a free, collaborative 3D-encyclopedia of proteins & other molecules. ISSN 2310-6301

Selected Pages Art on Science Journals Education
About this image
Coronavirus Spike Protein Priming

by Eric Martz
Coronavirus SARS-CoV-2 (responsible for COVID-19) has a spike protein on its surface, which enables it to infect host cells. Initially, proteases in the lungs clip the homo-trimeric spike protein at a unique sequence. This primes it, causing it to extend its receptor binding surface (shown in the above animation), optimizing binding to the host cell's ACE2 receptor (not shown). Next, spike protein initiates fusion of the virus and host cell membranes (not shown), enabling the virus RNA to enter the cell and initiate production of new virions. Knowledge of spike protein's molecular structure and function is crucial to developing effective therapies and vaccines.
>>> Visit this page >>>

About this image
Opening a Gate to Human Health

by Alice Clark (PDBe)
In the 1970s, an exciting discovery of a family of medicines was made by the Japanese scientist Satoshi Ōmura. One of these molecules, ivermectin, is shown in this artwork bound in the ligand binding pocket of the Farnesoid X receptor, a protein which helps regulate cholesterol in humans. This structure showed that ivermectin induced transcriptional activity of FXR and could be used to regulate metabolism.

>>> Visit this page >>>

About this image
Structure of Anticancer Ruthenium Half-Sandwich Complex Bound to Glycogen Synthase Kinase 3ß

G Atilla-Gocumen, L Di Costanzo, E Meggers. J Biol Inorg Chem. 2010 doi: 10.1007/s00775-010-0699-x
A crystal structure of an organometallic half-sandwich ruthenium complex bound to glycogen synthase kinase 3ß (GSK-3ß) reveals that the inhibitor binds to the ATP binding site via an induced fit mechanism utilizing several hydrogen bonds and hydrophobic interactions. Importantly, the metal is not involved in any direct interaction with the protein kinase but fulfills a purely structural role.

>>> Visit this I3DC complement >>>

About this image
Tutorial: How do we get the oxygen we breathe

J Prilusky, E Hodis doi: 10.14576/431679.1869588
This tutorial is designed for high school and beginning college students. When we breathe oxygen from the air is taken up by blood in our lungs and soon delivered to each of the cells in our body through our circulatory system. Among other uses, our cells use oxygen as the final electron acceptor in a process called aerobic respiration – a process that converts the energy in food and nutrients into a form of energy that the cell can readily use (molecules of ATP, adenosine triphosphate).

>>> Visit this tutorial >>>

Other Selected Pages More Art on Science Other Journals More on Education
How to author pages and contribute to Proteopedia How to get an Interactive 3D Complement for your paper How to author pages and contribute to Proteopedia

Proteopedia Page Contributors and Editors (what is this?)

Joel L. Sussman, Jaime Prilusky

Personal tools