Main Page

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 62: Line 62:
<table width='100%' style="padding: 10px; background-color: #d7d8f9; font-size: 1.5em;"><tr>
<table width='100%' style="padding: 10px; background-color: #d7d8f9; font-size: 1.5em;"><tr>
<td>[[Proteopedia:About|About]]</td>
<td>[[Proteopedia:About|About]]</td>
-
<td>{{Template:Contact}}</td>
+
<td>[http://proteopedia.org/cgi-bin/contact Contact]</td>
<td>[[Proteopedia:Table of Contents|Table of Contents]]</td>
<td>[[Proteopedia:Table of Contents|Table of Contents]]</td>
<td>[[Proteopedia:Structure Index|Structure Index]]</td>
<td>[[Proteopedia:Structure Index|Structure Index]]</td>

Revision as of 09:09, 21 October 2018

ISSN 2310-6301

As life is more than 2D, Proteopedia helps to bridge the 3D relationships between function & structure of biomacromolecules


Selected Pages Art on Science Journals Education
About this image
Green Fluorescent Protein

by Eran Hodis
Green fluorescent protein (GFP) is a bioluminescent polypeptide isolated from the jellyfish Aequorea victoria. GFP converts the blue chemiluminescence of aequorin into green fluorescent light. In the laboratory, GFP can be incorporated into a variety of biological systems in order to function as a marker protein. Since its discovery in 1962, GFP has become a significant contributor to the research of monitoring gene expression, localization, mobility, traffic, or interactions between various membrane and cytoplasmic proteins.

>>> Visit this page >>>

About this image
Molecular Sculpture

by Eric Martz
A historical review on sculptures and physical models of macromolecules.

>>> Visit this page >>>

About this image
Structural flexibility of the periplasmic protein, FlgA, regulates flagellar P-ring assembly in Salmonella enterica.

H Matsunami, YH Yoon, VA Meshcheryakov, K Namba, FA Samatey. Scientific Reports 2016 doi: 10.1038/srep27399
A periplasmic flagellar chaperone protein, FlgA, is required for P-ring assembly in bacterial flagella of taxa such as Salmonella enterica or Escherichia coli. Here we present the open and closed crystal structures of FlgA from Salmonella enterica serovar Typhimurium, grown under different crystallization conditions. An intramolecular disulfide cross-linked form of FlgA caused a dominant negative effect on motility of the wild-type strain.

>>> Visit this I3DC complement >>>

About this image
2025 Nobel Prize

by Wayne Decatur
The 2025 Nobel Prize in Chemistry was awarded for studies of metal-organic frameworks. Against expectations, the building blocks of metal-organic frameworks turned out to form networks with large cavities and the materials have a wide range of far-reaching practical applications.

>>> Visit this page >>>

How to add content to Proteopedia

Video Guides

Who knows ...

List of Art on Science pages in Proteopedia

What is an Interactive 3D Complement (I3DC)?

List of I3DCs

How to get an I3DC for your paper

Teaching Strategies Using Proteopedia

Examples of Pages for Teaching

How to add content to Proteopedia

About Contact Table of Contents Structure Index Help

Proteopedia Page Contributors and Editors (what is this?)

Joel L. Sussman, Jaime Prilusky

Personal tools