Main Page

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 3: Line 3:
<div style="top:+0.2em; font-size:1.2em; padding:5px 5px 5px 10px; float:right;">'''''ISSN 2310-6301'''''</div>
<div style="top:+0.2em; font-size:1.2em; padding:5px 5px 5px 10px; float:right;">'''''ISSN 2310-6301'''''</div>
-
<span style="border:none; margin:0; padding:0.3em; color:#000; font-style: italic; font-size: 1.2em;">
+
<span style="border:none; margin:0; padding:0.3em; color:#000; font-style: italic; font-size: 1.4em;">
<b>As life is more than 2D</b>, Proteopedia helps to bridge the gap between 3D structure & function of biomacromolecules
<b>As life is more than 2D</b>, Proteopedia helps to bridge the gap between 3D structure & function of biomacromolecules
</span>
</span>
-
<span style="border:none; margin:0; padding:0.3em; color:#000; font-style: italic; font-size: 0.8em;">
+
<span style="border:none; margin:0; padding:0.3em; color:#000; font-style: italic; font-size: 1.1em;max-width:50%;">
-
another text
+
Often it is difficult to utilize the wealth of information found in 3D biomacromolecular structures. Proteopedia's goal is to present structure/function information on these molecules in a user-friendly manner to a broad scientific audience.
</span>
</span>

Revision as of 12:08, 21 October 2018

ISSN 2310-6301

As life is more than 2D, Proteopedia helps to bridge the gap between 3D structure & function of biomacromolecules

Often it is difficult to utilize the wealth of information found in 3D biomacromolecular structures. Proteopedia's goal is to present structure/function information on these molecules in a user-friendly manner to a broad scientific audience.


Selected Pages Art on Science Journals Education
About this image
Coronavirus Spike Protein Membrane Fusion

by Eric Martz
SARS-CoV-2 spike protein "spears" the host membrane with a fusion peptide and drags the virus envelope membrane transmembrane domain close to the host membrane, initiating fusion. This moves the virus RNA genome into the host cell, initiating infection.
>>> Visit this page >>>

About this image
Molecular Sculpture

by Eric Martz
A historical review on sculptures and physical models of macromolecules.

>>> Visit this page >>>

About this image
Structural flexibility of the periplasmic protein, FlgA, regulates flagellar P-ring assembly in Salmonella enterica.

H Matsunami, YH Yoon, VA Meshcheryakov, K Namba, FA Samatey. Scientific Reports 2016 doi: 10.1038/srep27399
A periplasmic flagellar chaperone protein, FlgA, is required for P-ring assembly in bacterial flagella of taxa such as Salmonella enterica or Escherichia coli. Here we present the open and closed crystal structures of FlgA from Salmonella enterica serovar Typhimurium, grown under different crystallization conditions. An intramolecular disulfide cross-linked form of FlgA caused a dominant negative effect on motility of the wild-type strain.

>>> Visit this I3DC complement >>>

About this image
Introduction to protein structure

This tutorial illustrates some basic properties of protein structure:

  • Levels of protein structure.
  • Ways of representing protein structure.
  • Secondary structures.
  • Motifs in proteins.
  • Domains.
  • Tertiary structure.
  • Quaternary structure.

>>> Visit this page >>>

How to add content to Proteopedia

Video Guides

Who knows ...

List of Art on Science pages

About Interactive 3D Complements - I3DCs

List of I3DCs

How to get an I3DC for your paper

Teaching strategies using Proteopedia

Examples of pages for teaching

How to add content to Proteopedia

About Contact Table of Contents Structure Index Help

Proteopedia Page Contributors and Editors (what is this?)

Joel L. Sussman, Jaime Prilusky

Personal tools