|
|
Line 1: |
Line 1: |
| | | |
| ==Bacteriodes uniformis beta-glucuronidase 1 bound to D-glucaro-1,5-lactone== | | ==Bacteriodes uniformis beta-glucuronidase 1 bound to D-glucaro-1,5-lactone== |
- | <StructureSection load='6d41' size='340' side='right' caption='[[6d41]], [[Resolution|resolution]] 1.90Å' scene=''> | + | <StructureSection load='6d41' size='340' side='right'caption='[[6d41]], [[Resolution|resolution]] 1.90Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6d41]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Atcc_8492 Atcc 8492]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6D41 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6D41 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6d41]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacteroides_uniformis Bacteroides uniformis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6D41 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6D41 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GCB:D-SACCHARIC+ACID+1,5-LACTONE'>GCB</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.9Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">uidA_4, ERS417307_01040 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=820 ATCC 8492])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=GCB:(2S,3S,4S,5R)-3,4,5-trihydroxy-6-oxo-oxane-2-carboxylic+acid'>GCB</scene>, <scene name='pdbligand=GOL:GLYCEROL'>GOL</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Beta-glucuronidase Beta-glucuronidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.31 3.2.1.31] </span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6d41 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6d41 OCA], [https://pdbe.org/6d41 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6d41 RCSB], [https://www.ebi.ac.uk/pdbsum/6d41 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6d41 ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6d41 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6d41 OCA], [http://pdbe.org/6d41 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6d41 RCSB], [http://www.ebi.ac.uk/pdbsum/6d41 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6d41 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/A0A174CQK8_BACUN A0A174CQK8_BACUN] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 18: |
Line 19: |
| </div> | | </div> |
| <div class="pdbe-citations 6d41" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 6d41" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Glucuronisidase 3D structures|Glucuronisidase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Atcc 8492]] | + | [[Category: Bacteroides uniformis]] |
- | [[Category: Beta-glucuronidase]] | + | [[Category: Large Structures]] |
- | [[Category: Pellock, S J]] | + | [[Category: Pellock SJ]] |
- | [[Category: Redinbo, M R]] | + | [[Category: Redinbo MR]] |
- | [[Category: Walton, W G]] | + | [[Category: Walton WG]] |
- | [[Category: Hydrolase]]
| + | |
| Structural highlights
Function
A0A174CQK8_BACUN
Publication Abstract from PubMed
The carbohydrates and glycoconjugates that enter the human gastrointestinal tract (GI) are remarkably complex, and most of the genes encoding the enzymes required for processing these molecules are not present in the human genome. The glycoside hydrolases encoded by the human gut microbiome therefore play an integral role in processing these diverse exogenous and endogenous glycoconjugates. Here, we analyzed three structurally and functionally distinct beta-glucuronidase (GUS) glycoside hydrolases from a single commensal microbe of the human gut, Bacteroides uniformis. Using nine crystal structures and biochemical and biophysical data, we show that although these three proteins share similar overall folds, they exhibit different structural features that create three structurally and functionally unique active sites. Notably, we found that quaternary structure plays an important role in creating distinct active-site features that are difficult to predict via structural modeling methods alone. The enzymes displayed differential processing capabilities toward several glucuronic acid-containing polysaccharides. They also hydrolyzed SN-38-glucuronide, a metabolite of the anticancer drug irinotecan, suggesting that these gut-microbial enzymes could reactivate this drug in the GI. We further demonstrate that GUS-specific and non-selective inhibitors exhibit varying potencies toward each enzyme. Together, these results highlight the diversity of GUS enzymes within a single Bacteroides gut commensal and advance our understanding of how structural properties affect the specific roles of microbial enzymes in processing and catabolizing drug-derived glucuronides and glycan substrates.
Three structurally and functionally distinct beta-glucuronidases from the human gut microbe Bacteroides uniformis.,Pellock SJ, Walton WG, Biernat KA, Torres-Rivera D, Creekmore BC, Xu Y, Liu J, Tripathy A, Stewart LJ, Redinbo MR J Biol Chem. 2018 Oct 9. pii: RA118.005414. doi: 10.1074/jbc.RA118.005414. PMID:30301767[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Pellock SJ, Walton WG, Biernat KA, Torres-Rivera D, Creekmore BC, Xu Y, Liu J, Tripathy A, Stewart LJ, Redinbo MR. Three structurally and functionally distinct beta-glucuronidases from the human gut microbe Bacteroides uniformis. J Biol Chem. 2018 Oct 9. pii: RA118.005414. doi: 10.1074/jbc.RA118.005414. PMID:30301767 doi:http://dx.doi.org/10.1074/jbc.RA118.005414
|