|
|
Line 1: |
Line 1: |
| | | |
| ==Solution structure of dimeric TatA of twin-arginine translocation system from E. coli== | | ==Solution structure of dimeric TatA of twin-arginine translocation system from E. coli== |
- | <StructureSection load='2mn6' size='340' side='right' caption='[[2mn6]], [[NMR_Ensembles_of_Models | 10 NMR models]]' scene=''> | + | <StructureSection load='2mn6' size='340' side='right'caption='[[2mn6]], [[NMR_Ensembles_of_Models | 10 NMR models]]' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[2mn6]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Ecoli Ecoli]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2MN6 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2MN6 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[2mn6]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Ecoli Ecoli]. Full experimental information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=2MN6 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=2MN6 FirstGlance]. <br> |
- | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[2mn7|2mn7]]</td></tr> | + | </td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[2mn7|2mn7]]</div></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">tatA, mttA1, yigT, b3836, JW3813 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83333 ECOLI])</td></tr> | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">tatA, mttA1, yigT, b3836, JW3813 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83333 ECOLI])</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=2mn6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2mn6 OCA], [http://pdbe.org/2mn6 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=2mn6 RCSB], [http://www.ebi.ac.uk/pdbsum/2mn6 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=2mn6 ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=2mn6 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=2mn6 OCA], [https://pdbe.org/2mn6 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=2mn6 RCSB], [https://www.ebi.ac.uk/pdbsum/2mn6 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=2mn6 ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/TATA_ECOLI TATA_ECOLI]] Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin-arginine motif in their signal peptide across membranes. TatA could form the protein-conducting channel of the Tat system.<ref>PMID:9649434</ref> <ref>PMID:11922668</ref> | + | [[https://www.uniprot.org/uniprot/TATA_ECOLI TATA_ECOLI]] Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin-arginine motif in their signal peptide across membranes. TatA could form the protein-conducting channel of the Tat system.<ref>PMID:9649434</ref> <ref>PMID:11922668</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 24: |
Line 24: |
| </StructureSection> | | </StructureSection> |
| [[Category: Ecoli]] | | [[Category: Ecoli]] |
| + | [[Category: Large Structures]] |
| [[Category: Hu, Y]] | | [[Category: Hu, Y]] |
| [[Category: Jin, C]] | | [[Category: Jin, C]] |
| [[Category: Zhang, Y]] | | [[Category: Zhang, Y]] |
| [[Category: Transport protein]] | | [[Category: Transport protein]] |
| Structural highlights
Function
[TATA_ECOLI] Part of the twin-arginine translocation (Tat) system that transports large folded proteins containing a characteristic twin-arginine motif in their signal peptide across membranes. TatA could form the protein-conducting channel of the Tat system.[1] [2]
Publication Abstract from PubMed
Many proteins are transported across lipid membranes by protein translocation systems in living cells. The twin-arginine transport (Tat) system identified in bacteria and plant chloroplasts is a unique system that transports proteins across membranes in their fully-folded states. Up to date, the detailed molecular mechanism of this process remains largely unclear. The Escherichia coli Tat system consists of three essential transmembrane proteins: TatA, TatB and TatC. Among them, TatB and TatC form a tight complex and function in substrate recognition. The major component TatA contains a single transmembrane helix followed by an amphipathic helix, and is suggested to form the translocation pore via self-oligomerization. Since the TatA oligomer has to accommodate substrate proteins of various sizes and shapes, the process of its assembly stands essential for understanding the translocation mechanism. A structure model of TatA oligomer was recently proposed based on NMR and EPR observations, revealing contacts between the transmembrane helices from adjacent subunits. Herein we report the construction and stabilization of a dimeric TatA, as well as the structure determination by solution NMR spectroscopy. In addition to more extensive inter-subunit contacts between the transmembrane helices, we were also able to observe interactions between neighbouring amphipathic helices. The side-by-side packing of the amphipathic helices extends the solvent-exposed hydrophilic surface of the protein, which might be favourable for interactions with substrate proteins. The dimeric TatA structure offers more detailed information of TatA oligomeric interface and provides new insights on Tat translocation mechanism.
Structural basis for TatA oligomerization: an NMR study of Escherichia coli TatA dimeric structure.,Zhang Y, Hu Y, Li H, Jin C PLoS One. 2014 Aug 4;9(8):e103157. doi: 10.1371/journal.pone.0103157. eCollection, 2014. PMID:25090434[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Sargent F, Bogsch EG, Stanley NR, Wexler M, Robinson C, Berks BC, Palmer T. Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO J. 1998 Jul 1;17(13):3640-50. PMID:9649434 doi:10.1093/emboj/17.13.3640
- ↑ Ize B, Gerard F, Zhang M, Chanal A, Voulhoux R, Palmer T, Filloux A, Wu LF. In vivo dissection of the Tat translocation pathway in Escherichia coli. J Mol Biol. 2002 Mar 29;317(3):327-35. PMID:11922668 doi:10.1006/jmbi.2002.5431
- ↑ Zhang Y, Hu Y, Li H, Jin C. Structural basis for TatA oligomerization: an NMR study of Escherichia coli TatA dimeric structure. PLoS One. 2014 Aug 4;9(8):e103157. doi: 10.1371/journal.pone.0103157. eCollection, 2014. PMID:25090434 doi:http://dx.doi.org/10.1371/journal.pone.0103157
|