Proteinase
From Proteopedia
(Difference between revisions)
												
			
			| Line 15: | Line 15: | ||
[C] The molecular models of the IRD bound HaTry predicted several atomic interactions with a reactive loop of inhibitors that also explained the contribution of the solvent exposed reactive loop. There are several hydrogen bonds in the <scene name='Journal:JBSD:39/Ird9/3'>IRD-9-HaTry complex</scene>. ARG-39 from <scene name='Journal:JBSD:39/Cv/17'>IRD-12</scene> reactive site formed two hydrogen bonds with the residues of the HaTry active site. In <scene name='Journal:JBSD:39/Ird9/2'>case of IRD-7</scene>, side chain of LYS-39 residue of reactive loop form one hydrogen bond each, with carboxyl oxygen atom of HIS-50. MD simulations provides structural insight into an importance of inter/intra molecular hydrogen bonds and its effect on the interaction between protease and PIs. The results of this analysis were corroborated with previous reports. Post simulation analysis also explained experimentally observed increase in binding affinity, hence activity of IRD-9 towards proteases. See also <ref name="Barrette-Ng">PMID: 12684499</ref> <ref name="Dunse">PMID: 20696921</ref> <ref name="Tamhane">PMID: 19393726</ref> <ref name="Tamhane1">PMID: 15715970</ref>.  | [C] The molecular models of the IRD bound HaTry predicted several atomic interactions with a reactive loop of inhibitors that also explained the contribution of the solvent exposed reactive loop. There are several hydrogen bonds in the <scene name='Journal:JBSD:39/Ird9/3'>IRD-9-HaTry complex</scene>. ARG-39 from <scene name='Journal:JBSD:39/Cv/17'>IRD-12</scene> reactive site formed two hydrogen bonds with the residues of the HaTry active site. In <scene name='Journal:JBSD:39/Ird9/2'>case of IRD-7</scene>, side chain of LYS-39 residue of reactive loop form one hydrogen bond each, with carboxyl oxygen atom of HIS-50. MD simulations provides structural insight into an importance of inter/intra molecular hydrogen bonds and its effect on the interaction between protease and PIs. The results of this analysis were corroborated with previous reports. Post simulation analysis also explained experimentally observed increase in binding affinity, hence activity of IRD-9 towards proteases. See also <ref name="Barrette-Ng">PMID: 12684499</ref> <ref name="Dunse">PMID: 20696921</ref> <ref name="Tamhane">PMID: 19393726</ref> <ref name="Tamhane1">PMID: 15715970</ref>.  | ||
| + | |||
| + | ==3D structures of proteinase==  | ||
| + | [[Proteinase 3D structures]]  | ||
| + | |||
</StructureSection>  | </StructureSection>  | ||
| Line 24: | Line 28: | ||
*'''Proteinase A or saccharopepsin'''  | *'''Proteinase A or saccharopepsin'''  | ||
| - | **[[2sga]] – SgPRO – ''Streptomyces griseus''<br />  | ||
**[[2jxr]], [[1fmu]], [[1fmx]] – yPRO - yeast<br />  | **[[2jxr]], [[1fmu]], [[1fmx]] – yPRO - yeast<br />  | ||
| - | **[[1sgc]] - SgPRO + chymostatin A<br />  | ||
| - | **[[3sga]], [[4sga]], [[5sga]] - SgPRO + polypeptide inhibitor<br />  | ||
**[[1dp5]], [[1dpj]], [[1g0v]] - yPRO + polypeptide inhibitor IA3<br />  | **[[1dp5]], [[1dpj]], [[1g0v]] - yPRO + polypeptide inhibitor IA3<br />  | ||
**[[1fq5]], [[1fq6]], [[1fq7]], [[1fq8]] - yPRO + inhibitor<br />  | **[[1fq5]], [[1fq6]], [[1fq7]], [[1fq8]] - yPRO + inhibitor<br />  | ||
| + | **[[2sga]] – SgPRO – ''Streptomyces griseus''<br />  | ||
| + | **[[1sgc]] - SgPRO + chymostatin A<br />  | ||
| + | **[[3sga]], [[4sga]], [[5sga]] - SgPRO + polypeptide inhibitor<br />  | ||
**[[4fvd]] – hevPRO 2A + peptide – human enterovirus <br />  | **[[4fvd]] – hevPRO 2A + peptide – human enterovirus <br />  | ||
**[[4fvb]] – hevPRO 2A (mutant) <br />  | **[[4fvb]] – hevPRO 2A (mutant) <br />  | ||
| Line 82: | Line 86: | ||
*'''Aspartic Proteinase'''   | *'''Aspartic Proteinase'''   | ||
| + | **[[1fq4]] - yPRO + inhibitor<br />  | ||
**[[2asi]] – PRO – ''Rhizomucor miehei''<br />  | **[[2asi]] – PRO – ''Rhizomucor miehei''<br />  | ||
**[[1zap]] – CaPRO – ''Candida albicans''<br />  | **[[1zap]] – CaPRO – ''Candida albicans''<br />  | ||
| - | **[[1izd]] - AoPRO – ''Aspergillus oryzae''<br />  | ||
**[[1eag]] – CaPRO + inhibitor <br />  | **[[1eag]] – CaPRO + inhibitor <br />  | ||
| - | **[[  | + | **[[1izd]] - AoPRO – ''Aspergillus oryzae''<br />  | 
| - | + | ||
**[[1ize]] - AoPRO + polypeptide-statin inhibitor<br />  | **[[1ize]] - AoPRO + polypeptide-statin inhibitor<br />  | ||
| + | **[[1j71]] - PRO + polypeptide inhibitor – ''Candida tropicalis''<br />  | ||
**[[1wkr]] - PRO + polypeptide-statin inhibitor – ''Irpex lacteus''  | **[[1wkr]] - PRO + polypeptide-statin inhibitor – ''Irpex lacteus''  | ||
*'''Cysteine Proteinase''' or '''gingipain'''  | *'''Cysteine Proteinase''' or '''gingipain'''  | ||
| + | **[[2e03]], [[2e02]], [[2e01]], [[2e00]], [[2dzz]], [[2dzy]] – yPRO 1 (mutant) <br />  | ||
**[[2hrv]] – PRO 2A – human rhinovirus<br />  | **[[2hrv]] – PRO 2A – human rhinovirus<br />  | ||
**[[3m1h]], [[4itc]] – PgPRO adhesion domain residues 982-1154 – ''Porphyromonas gingivalis'' <br />  | **[[3m1h]], [[4itc]] – PgPRO adhesion domain residues 982-1154 – ''Porphyromonas gingivalis'' <br />  | ||
| Line 98: | Line 103: | ||
**[[5mun]] – PgPRO residues 20-228 <br />  | **[[5mun]] – PgPRO residues 20-228 <br />  | ||
**[[2fo5]] – PRO residues 133-356 + leupeptin – ''Hordenum vulgare'' <br />  | **[[2fo5]] – PRO residues 133-356 + leupeptin – ''Hordenum vulgare'' <br />  | ||
| - | **[[2e03]], [[2e02]], [[2e01]], [[2e00]], [[2dzz]], [[2dzy]] – yPRO 1 (mutant) <br />  | ||
**[[1x9y]] – SaPRO – ''Staphylococcus aureus'' <br />  | **[[1x9y]] – SaPRO – ''Staphylococcus aureus'' <br />  | ||
**[[1y4h]], [[1pxv]] – SaPRO + PRO inhibitor <br />  | **[[1y4h]], [[1pxv]] – SaPRO + PRO inhibitor <br />  | ||
| Line 104: | Line 108: | ||
*'''Serine Proteinase'''  | *'''Serine Proteinase'''  | ||
| - | **[[  | + | **[[5m3n]], [[1lcy]] – hPRO HTRA2 – human <br />  | 
| + | **[[5fht]], [[5m3o]], [[5tny]], [[5tnz]], [[5to0]], [[5to1]], [[5wyn]] – hPRO HTRA2 (mutant) <br />  | ||
**[[3s9a]], [[3s9b]] – RvPRO – Siamese Russell’s viper<br />  | **[[3s9a]], [[3s9b]] – RvPRO – Siamese Russell’s viper<br />  | ||
| + | **[[3s9c]], [[3sbk]] – RvPRO + human factor V polypeptide<br />  | ||
**[[1po0]], [[1op2]] – PRO – Chinese moccasin <br />  | **[[1po0]], [[1op2]] – PRO – Chinese moccasin <br />  | ||
**[[1qy8]] – SaPRO <br />  | **[[1qy8]] – SaPRO <br />  | ||
**[[1mbm]] – PRO – equine arteritis virus <br />  | **[[1mbm]] – PRO – equine arteritis virus <br />  | ||
| - | **[[1dbi]] – PRO – ''Bacillus'' <br />  | + | **[[1dbi]] – PRO – ''Bacillus'' <br />>  | 
| - | + | ||
**[[1ga1]], [[1ga4]], [[1ga6]], [[1nlu]] – PsPRO + iodotyrostatin fragment – ''Pseudomonas''<br />  | **[[1ga1]], [[1ga4]], [[1ga6]], [[1nlu]] – PsPRO + iodotyrostatin fragment – ''Pseudomonas''<br />  | ||
**[[6m8w]], [[6m8y]], [[6m8f]], [[6m9c]], [[6m9d]] - PsPRO + polypeptide inhibitor<br />  | **[[6m8w]], [[6m8y]], [[6m8f]], [[6m9c]], [[6m9d]] - PsPRO + polypeptide inhibitor<br />  | ||
| - | **[[  | + | **[[1s2n]], [[1sh7]] – PRO – ''Vibrio''<br />  | 
| - | + | ||
}}  | }}  | ||
Revision as of 10:36, 2 December 2019
  | |||||||||||
3D structures of proteinase
Updated on 02-December-2019
References
- ↑ Moehle CM, Tizard R, Lemmon SK, Smart J, Jones EW. Protease B of the lysosomelike vacuole of the yeast Saccharomyces cerevisiae is homologous to the subtilisin family of serine proteases. Mol Cell Biol. 1987 Dec;7(12):4390-9. PMID:3325823
 - ↑ Mechler B, Wolf DH. Analysis of proteinase A function in yeast. Eur J Biochem. 1981 Dec;121(1):47-52. PMID:6799292
 - ↑ Petsch D, Deckwer WD, Anspach FB. Proteinase K digestion of proteins improves detection of bacterial endotoxins by the Limulus amebocyte lysate assay: application for endotoxin removal from cationic proteins. Anal Biochem. 1998 May 15;259(1):42-7. doi: 10.1006/abio.1998.2655. PMID:9606141 doi:http://dx.doi.org/10.1006/abio.1998.2655
 - ↑ Joshi RS, Mishra M, Tamhane VA, Ghosh A, Sonavane U, Suresh CG, Joshi R, Gupta VS, Giri AP. The remarkable efficiency of a Pin-II proteinase inhibitor sans two conserved disulfide bonds is due to enhanced flexibility and hydrogen bond density in the reactive site loop. J Biomol Struct Dyn. 2012 Dec 20. PMID:23256852 doi:10.1080/07391102.2012.745378
 - ↑ 5.0 5.1 Green TR, Ryan CA. Wound-Induced Proteinase Inhibitor in Plant Leaves: A Possible Defense Mechanism against Insects. Science. 1972 Feb 18;175(4023):776-7. PMID:17836138 doi:10.1126/science.175.4023.776
 - ↑ Kong L, Ranganathan S. Tandem duplication, circular permutation, molecular adaptation: how Solanaceae resist pests via inhibitors. BMC Bioinformatics. 2008;9 Suppl 1:S22. PMID:18315854 doi:10.1186/1471-2105-9-S1-S22
 - ↑ Johnson R, Narvaez J, An G, Ryan C. Expression of proteinase inhibitors I and II in transgenic tobacco plants: effects on natural defense against Manduca sexta larvae. Proc Natl Acad Sci U S A. 1989 Dec;86(24):9871-5. PMID:2602379
 - ↑ Duan X, Li X, Xue Q, Abo-el-Saad M, Xu D, Wu R. Transgenic rice plants harboring an introduced potato proteinase inhibitor II gene are insect resistant. Nat Biotechnol. 1996 Apr;14(4):494-8. PMID:9630927 doi:10.1038/nbt0496-494
 - ↑ Nielsen KJ, Heath RL, Anderson MA, Craik DJ. Structures of a series of 6-kDa trypsin inhibitors isolated from the stigma of Nicotiana alata. Biochemistry. 1995 Nov 7;34(44):14304-11. PMID:7578034
 - ↑ Scanlon MJ, Lee MC, Anderson MA, Craik DJ. Structure of a putative ancestral protein encoded by a single sequence repeat from a multidomain proteinase inhibitor gene from Nicotiana alata. Structure. 1999 Jul 15;7(7):793-802. PMID:10425681
 - ↑ Lee MC, Scanlon MJ, Craik DJ, Anderson MA. A novel two-chain proteinase inhibitor generated by circularization of a multidomain precursor protein. Nat Struct Biol. 1999 Jun;6(6):526-30. PMID:10360353 doi:10.1038/9293
 - ↑ Schirra HJ, Scanlon MJ, Lee MC, Anderson MA, Craik DJ. The solution structure of C1-T1, a two-domain proteinase inhibitor derived from a circular precursor protein from Nicotiana alata. J Mol Biol. 2001 Feb 9;306(1):69-79. PMID:11178894 doi:10.1006/jmbi.2000.4318
 - ↑ Schirra HJ, Craik DJ. Structure and folding of potato type II proteinase inhibitors: circular permutation and intramolecular domain swapping. Protein Pept Lett. 2005 Jul;12(5):421-31. PMID:16029154
 - ↑ Schirra HJ, Anderson MA, Craik DJ. Structural refinement of insecticidal plant proteinase inhibitors from Nicotiana alata. Protein Pept Lett. 2008;15(9):903-9. PMID:18991765
 - ↑ Schirra HJ, Guarino RF, Anderson MA, Craik DJ. Selective removal of individual disulfide bonds within a potato type II serine proteinase inhibitor from Nicotiana alata reveals differential stabilization of the reactive-site loop. J Mol Biol. 2010 Jan 22;395(3):609-26. Epub 2009 Nov 17. PMID:19925809 doi:10.1016/j.jmb.2009.11.031
 - ↑ Li XQ, Zhang T, Donnelly D. Selective loss of cysteine residues and disulphide bonds in a potato proteinase inhibitor II family. PLoS One. 2011 Apr 11;6(4):e18615. PMID:21494600 doi:10.1371/journal.pone.0018615
 - ↑ Barrette-Ng IH, Ng KK, Cherney MM, Pearce G, Ryan CA, James MN. Structural basis of inhibition revealed by a 1:2 complex of the two-headed tomato inhibitor-II and subtilisin Carlsberg. J Biol Chem. 2003 Jun 27;278(26):24062-71. Epub 2003 Apr 8. PMID:12684499 doi:10.1074/jbc.M302020200
 - ↑ Dunse KM, Kaas Q, Guarino RF, Barton PA, Craik DJ, Anderson MA. Molecular basis for the resistance of an insect chymotrypsin to a potato type II proteinase inhibitor. Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15016-21. Epub 2010 Aug 9. PMID:20696921 doi:10.1073/pnas.1009327107
 - ↑ Tamhane VA, Giri AP, Kumar P, Gupta VS. Spatial and temporal expression patterns of diverse Pin-II proteinase inhibitor genes in Capsicum annuum Linn. Gene. 2009 Aug 1;442(1-2):88-98. Epub 2009 Apr 22. PMID:19393726 doi:10.1016/j.gene.2009.04.012
 - ↑ Tamhane VA, Chougule NP, Giri AP, Dixit AR, Sainani MN, Gupta VS. In vivo and in vitro effect of Capsicum annum proteinase inhibitors on Helicoverpa armigera gut proteinases. Biochim Biophys Acta. 2005 Mar 11;1722(2):156-67. Epub 2005 Jan 12. PMID:15715970 doi:10.1016/j.bbagen.2004.12.017
 
Proteopedia Page Contributors and Editors (what is this?)
Michal Harel, Joel L. Sussman, Alexander Berchansky, Karsten Theis

