6etc

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (05:56, 20 May 2020) (edit) (undo)
 
Line 1: Line 1:
==Crystal Structure of Human gamma-D-crystallin Mutant P23T+R36S at 1.2 Angstroms Resolution==
==Crystal Structure of Human gamma-D-crystallin Mutant P23T+R36S at 1.2 Angstroms Resolution==
-
<StructureSection load='6etc' size='340' side='right' caption='[[6etc]], [[Resolution|resolution]] 1.20&Aring;' scene=''>
+
<StructureSection load='6etc' size='340' side='right'caption='[[6etc]], [[Resolution|resolution]] 1.20&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[6etc]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6ETC OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6ETC FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[6etc]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6ETC OCA]. For a <b>guided tour on the structure components</b> use [http://proteopedia.org/fgij/fg.htm?mol=6ETC FirstGlance]. <br>
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[6eta|6eta]]</td></tr>
</td></tr><tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[6eta|6eta]]</td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6etc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6etc OCA], [http://pdbe.org/6etc PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6etc RCSB], [http://www.ebi.ac.uk/pdbsum/6etc PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6etc ProSAT]</span></td></tr>
+
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">CRYGD, CRYG4 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
 +
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://proteopedia.org/fgij/fg.htm?mol=6etc FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6etc OCA], [http://pdbe.org/6etc PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6etc RCSB], [http://www.ebi.ac.uk/pdbsum/6etc PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6etc ProSAT]</span></td></tr>
</table>
</table>
== Disease ==
== Disease ==
Line 11: Line 12:
== Function ==
== Function ==
[[http://www.uniprot.org/uniprot/CRGD_HUMAN CRGD_HUMAN]] Crystallins are the dominant structural components of the vertebrate eye lens.
[[http://www.uniprot.org/uniprot/CRGD_HUMAN CRGD_HUMAN]] Crystallins are the dominant structural components of the vertebrate eye lens.
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
Protein crystal production is a major bottleneck in the structural characterization of proteins. To advance beyond large-scale screening, rational strategies for protein crystallization are crucial. Understanding how chemical anisotropy (or patchiness) of the protein surface, due to the variety of amino-acid side chains in contact with solvent, contributes to protein-protein contact formation in the crystal lattice is a major obstacle to predicting and optimizing crystallization. The relative scarcity of sophisticated theoretical models that include sufficient detail to link collective behavior, captured in protein phase diagrams, and molecular-level details, determined from high-resolution structural information, is a further barrier. Here, we present two crystal structures for the P23T + R36S mutant of gammaD-crystallin, each with opposite solubility behavior: one melts when heated, the other when cooled. When combined with the protein phase diagram and a tailored patchy particle model, we show that a single temperature-dependent interaction is sufficient to stabilize the inverted solubility crystal. This contact, at the P23T substitution site, relates to a genetic cataract and reveals at a molecular level the origin of the lowered and retrograde solubility of the protein. Our results show that the approach employed here may present a productive strategy for the rationalization of protein crystallization.
 +
 +
Temperature-Dependent Interactions Explain Normal and Inverted Solubility in a gammaD-Crystallin Mutant.,Khan AR, James S, Quinn MK, Altan I, Charbonneau P, McManus JJ Biophys J. 2019 Sep 3;117(5):930-937. doi: 10.1016/j.bpj.2019.07.019. Epub 2019, Jul 19. PMID:31422822<ref>PMID:31422822</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 6etc" style="background-color:#fffaf0;"></div>
 +
 +
==See Also==
 +
*[[Crystallin 3D structures|Crystallin 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
 +
[[Category: Human]]
 +
[[Category: Large Structures]]
[[Category: Khan, A R]]
[[Category: Khan, A R]]
[[Category: McManus, J]]
[[Category: McManus, J]]
[[Category: Human eye lens protein age-related cataract structural protein]]
[[Category: Human eye lens protein age-related cataract structural protein]]
[[Category: Structural protein]]
[[Category: Structural protein]]

Current revision

Crystal Structure of Human gamma-D-crystallin Mutant P23T+R36S at 1.2 Angstroms Resolution

PDB ID 6etc

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools