|
|
Line 1: |
Line 1: |
| | | |
| ==Structure of P22 Tail-Needle GP26 Bound to Xenon Gas== | | ==Structure of P22 Tail-Needle GP26 Bound to Xenon Gas== |
- | <StructureSection load='3c9i' size='340' side='right' caption='[[3c9i]], [[Resolution|resolution]] 1.95Å' scene=''> | + | <StructureSection load='3c9i' size='340' side='right'caption='[[3c9i]], [[Resolution|resolution]] 1.95Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3c9i]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Bacteriophage_p22 Bacteriophage p22]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3C9I OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3C9I FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3c9i]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Bacteriophage_p22 Bacteriophage p22]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3C9I OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3C9I FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=XE:XENON'>XE</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=XE:XENON'>XE</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">26 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10754 Bacteriophage P22])</td></tr> | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">26 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10754 Bacteriophage P22])</td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3c9i FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3c9i OCA], [http://pdbe.org/3c9i PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3c9i RCSB], [http://www.ebi.ac.uk/pdbsum/3c9i PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3c9i ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3c9i FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3c9i OCA], [https://pdbe.org/3c9i PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3c9i RCSB], [https://www.ebi.ac.uk/pdbsum/3c9i PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3c9i ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/VG26_BPP22 VG26_BPP22]] Cell-perforating component and plug protein of the phage tail machine. Host cell membrane perforation allows viral DNA injection. Together with gp4 and gp10, gp26 is required for stabilization of the condensed DNA within the capsid by plugging the hole through which the DNA enters.<ref>PMID:20817910</ref> <ref>PMID:18059287</ref> | + | [[https://www.uniprot.org/uniprot/VG26_BPP22 VG26_BPP22]] Cell-perforating component and plug protein of the phage tail machine. Host cell membrane perforation allows viral DNA injection. Together with gp4 and gp10, gp26 is required for stabilization of the condensed DNA within the capsid by plugging the hole through which the DNA enters.<ref>PMID:20817910</ref> <ref>PMID:18059287</ref> |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
Line 34: |
Line 34: |
| </StructureSection> | | </StructureSection> |
| [[Category: Bacteriophage p22]] | | [[Category: Bacteriophage p22]] |
| + | [[Category: Large Structures]] |
| [[Category: Cingolani, G]] | | [[Category: Cingolani, G]] |
| [[Category: Olia, A S]] | | [[Category: Olia, A S]] |
| Structural highlights
Function
[VG26_BPP22] Cell-perforating component and plug protein of the phage tail machine. Host cell membrane perforation allows viral DNA injection. Together with gp4 and gp10, gp26 is required for stabilization of the condensed DNA within the capsid by plugging the hole through which the DNA enters.[1] [2]
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The tail needle, gp26, is a highly stable homo-trimeric fiber found in the tail apparatus of bacteriophage P22. In the mature virion, gp26 is responsible for plugging the DNA exit channel, and likely plays an important role in penetrating the host cell envelope. In this article, we have determined the 1.98 A resolution crystal structure of gp26 bound to xenon gas. The structure led us to identify a calcium and a chloride ion intimately bound at the interior of alpha-helical core, as well as seven small cavities occupied by xenon atoms. The two ions engage in buried polar interactions with gp26 side chains that provide specificity and register to gp26 helical core, thus enhancing its stability. Conversely, the distribution of xenon accessible cavities correlates well with the flexibility of the fiber observed in solution and in the crystal structure. We suggest that small internal cavities in gp26 between the helical core and the C-terminal tip allow for flexible swinging of the latter, without affecting the overall stability of the protein. The C-terminal tip may be important in scanning the bacterial surface in search of a cell-envelope penetration site, or for recognition of a yet unidentified receptor on the surface of the host.
Structural plasticity of the phage P22 tail needle gp26 probed with xenon gas.,Olia AS, Casjens S, Cingolani G Protein Sci. 2009 Mar;18(3):537-48. PMID:19241380[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Andres D, Hanke C, Baxa U, Seul A, Barbirz S, Seckler R. Tailspike interactions with lipopolysaccharide effect DNA ejection from phage P22 particles in vitro. J Biol Chem. 2010 Nov 19;285(47):36768-75. doi: 10.1074/jbc.M110.169003. Epub, 2010 Sep 3. PMID:20817910 doi:http://dx.doi.org/10.1074/jbc.M110.169003
- ↑ Olia AS, Casjens S, Cingolani G. Structure of phage P22 cell envelope-penetrating needle. Nat Struct Mol Biol. 2007 Dec 2. PMID:18059287 doi:10.1038/nsmb1317
- ↑ Olia AS, Casjens S, Cingolani G. Structural plasticity of the phage P22 tail needle gp26 probed with xenon gas. Protein Sci. 2009 Mar;18(3):537-48. PMID:19241380 doi:10.1002/pro.53
|