Adenylyl cyclase
From Proteopedia
(Difference between revisions)
| Line 4: | Line 4: | ||
{{Clear}} | {{Clear}} | ||
| - | + | '''Adenylyl cyclase-associated protein''' (CAP) regulates the actin cytyoskeleton and cell adhesion in all eukaryotes<ref>PMID:237377525</ref>. | |
| + | |||
== Introduction == | == Introduction == | ||
There are ten isozymes of adenylyl cyclases in mammals, adenylyl cyclase type I-X, (ADCY I-X), and many more in other organisms<ref name="Taussig"/>. All mammalian, and most other adenylyl cyclases belong to class III; most are integral membrane proteins, and all produce cAMP, the ability of which can be activated or inactivated in response to certain conditions or ligands<ref name="Taussig"/>. All mammalian membrane bound adenylyl cyclases are activated by alpha subunits of G-proteins, but respond differently to ligands such as magnesium ions, calcium ions, and beta gamma subunits of G proteins<ref name="Taussig"/>. One of the mammalian isozymes, and some prokaryotic forms of adenylyl cyclase respond to environmental conditions, primarily pH<ref>PMID:14512417</ref><ref name="Linder">PMID:11839758</ref>. | There are ten isozymes of adenylyl cyclases in mammals, adenylyl cyclase type I-X, (ADCY I-X), and many more in other organisms<ref name="Taussig"/>. All mammalian, and most other adenylyl cyclases belong to class III; most are integral membrane proteins, and all produce cAMP, the ability of which can be activated or inactivated in response to certain conditions or ligands<ref name="Taussig"/>. All mammalian membrane bound adenylyl cyclases are activated by alpha subunits of G-proteins, but respond differently to ligands such as magnesium ions, calcium ions, and beta gamma subunits of G proteins<ref name="Taussig"/>. One of the mammalian isozymes, and some prokaryotic forms of adenylyl cyclase respond to environmental conditions, primarily pH<ref>PMID:14512417</ref><ref name="Linder">PMID:11839758</ref>. | ||
| Line 58: | Line 59: | ||
=== Biological Role === | === Biological Role === | ||
''M. tuberculosis'' is a pathogenic bacterium, and thus it faces an array of a host's immune responses to attempt in an attempt to rid of it<ref>PMID:11239406</ref>. One of the hosts defense mechanisms ''M. tuberculosis'' faces is acidification encountered in phagolysosomes. The ability to be able to detect this acidic environment, and have an appropriate response to it may greatly assist ''M. tuberculosis'' infect a host<ref>PMID:15275372</ref><ref>PMID:17342138</ref>. As cAMP levels are increased, acidification of other structures is delayed and elevated cAMP levels activate cAMP receptor proteins which in turn regulate transcription<ref>PMID:165421</ref><ref>PMID:15882420</ref>. | ''M. tuberculosis'' is a pathogenic bacterium, and thus it faces an array of a host's immune responses to attempt in an attempt to rid of it<ref>PMID:11239406</ref>. One of the hosts defense mechanisms ''M. tuberculosis'' faces is acidification encountered in phagolysosomes. The ability to be able to detect this acidic environment, and have an appropriate response to it may greatly assist ''M. tuberculosis'' infect a host<ref>PMID:15275372</ref><ref>PMID:17342138</ref>. As cAMP levels are increased, acidification of other structures is delayed and elevated cAMP levels activate cAMP receptor proteins which in turn regulate transcription<ref>PMID:165421</ref><ref>PMID:15882420</ref>. | ||
| + | |||
| + | == 3D Structures of adenylyl cyclase == | ||
| + | 3D Adenylyl cyclase 3D structures]] | ||
</StructureSection> | </StructureSection> | ||
| Line 119: | Line 123: | ||
**[[2col]], [[1zot]], [[1yru]], [[1yrt]] - CyaA adenylate cyclase toxin – ''Bordetella pertussis''<br /> | **[[2col]], [[1zot]], [[1yru]], [[1yrt]] - CyaA adenylate cyclase toxin – ''Bordetella pertussis''<br /> | ||
**[[5xnw]] – ExoY nucleotidyl cyclase toxin – ''Pseudomonas aeruginosa''<br /> | **[[5xnw]] – ExoY nucleotidyl cyclase toxin – ''Pseudomonas aeruginosa''<br /> | ||
| + | |||
| + | *ADCY-associated protein | ||
| + | |||
| + | **[[1k4z]] - yCAP C-terminal – yeast<br /> | ||
| + | **[[1kq5]] - yCAP C-terminal (mutant)<br /> | ||
| + | **[[1k8f]] - hCAP C-terminal <br /> | ||
| + | **[[1s0p]], [[1tjf]] - CAP N-terminal – ''Dictyostelium discoideum''<br /> | ||
| + | **[[6fm2]] - CAP residues 317-474 + actin + ADP – mouse<br /> | ||
| + | |||
| + | |||
}} | }} | ||
== References == | == References == | ||
Revision as of 08:54, 3 March 2019
| |||||||||||
3D Structures of Adenylyl cyclase
Updated on 03-March-2019
References
- ↑ 1.0 1.1 1.2 1.3 1.4 Taussig R, Gilman AG. Mammalian membrane-bound adenylyl cyclases. J Biol Chem. 1995 Jan 6;270(1):1-4. PMID:7814360
- ↑ 2.0 2.1 2.2 2.3 2.4 Hurley JH. Structure, mechanism, and regulation of mammalian adenylyl cyclase. J Biol Chem. 1999 Mar 19;274(12):7599-602. PMID:10075642
- ↑ 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 Zhang G, Liu Y, Ruoho AE, Hurley JH. Structure of the adenylyl cyclase catalytic core. Nature. 1997 Mar 20;386(6622):247-53. PMID:9069282 doi:10.1038/386247a0
- ↑ Ketkar AD, Shenoy AR, Kesavulu MM, Visweswariah SS, Suguna K. Purification, crystallization and preliminary X-ray diffraction analysis of the catalytic domain of adenylyl cyclase Rv1625c from Mycobacterium tuberculosis. Acta Crystallogr D Biol Crystallogr. 2004 Feb;60(Pt 2):371-3. Epub 2004, Jan 23. PMID:14747729 doi:10.1107/S0907444903028002
- ↑ Beis I, Newsholme EA. The contents of adenine nucleotides, phosphagens and some glycolytic intermediates in resting muscles from vertebrates and invertebrates. Biochem J. 1975 Oct;152(1):23-32. PMID:1212224
- ↑ Haring HU, Renner R, Hepp KD. Hormonal control of cyclic AMP turnover in isolated fat cells. Mol Cell Endocrinol. 1976 Aug-Sep;5(3-4):295-302. PMID:182581
- ↑ . PMID:237377525
- ↑ Pastor-Soler N, Beaulieu V, Litvin TN, Da Silva N, Chen Y, Brown D, Buck J, Levin LR, Breton S. Bicarbonate-regulated adenylyl cyclase (sAC) is a sensor that regulates pH-dependent V-ATPase recycling. J Biol Chem. 2003 Dec 5;278(49):49523-9. Epub 2003 Sep 25. PMID:14512417 doi:10.1074/jbc.M309543200
- ↑ 9.0 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 Linder JU, Schultz A, Schultz JE. Adenylyl cyclase Rv1264 from Mycobacterium tuberculosis has an autoinhibitory N-terminal domain. J Biol Chem. 2002 May 3;277(18):15271-6. Epub 2002 Feb 11. PMID:11839758 doi:10.1074/jbc.M200235200
- ↑ 10.0 10.1 10.2 Siddappa R, Martens A, Doorn J, Leusink A, Olivo C, Licht R, van Rijn L, Gaspar C, Fodde R, Janssen F, van Blitterswijk C, de Boer J. cAMP/PKA pathway activation in human mesenchymal stem cells in vitro results in robust bone formation in vivo. Proc Natl Acad Sci U S A. 2008 May 20;105(20):7281-6. Epub 2008 May 19. PMID:18490653
- ↑ Cox RP, Gilbert P Jr, Griffin MJ. Alkaline inorganic pyrophosphatase activity of mammalian-cell alkaline phosphatase. Biochem J. 1967 Oct;105(1):155-61. PMID:4964763
- ↑ Boyer PD. The ATP synthase--a splendid molecular machine. Annu Rev Biochem. 1997;66:717-49. PMID:9242922 doi:10.1146/annurev.biochem.66.1.717
- ↑ 13.0 13.1 Feinstein PG, Schrader KA, Bakalyar HA, Tang WJ, Krupinski J, Gilman AG, Reed RR. Molecular cloning and characterization of a Ca2+/calmodulin-insensitive adenylyl cyclase from rat brain. Proc Natl Acad Sci U S A. 1991 Nov 15;88(22):10173-7. PMID:1719547
- ↑ 14.0 14.1 14.2 14.3 14.4 Tesmer JJ, Sunahara RK, Gilman AG, Sprang SR. Crystal structure of the catalytic domains of adenylyl cyclase in a complex with Gsalpha.GTPgammaS. Science. 1997 Dec 12;278(5345):1907-16. PMID:9417641
- ↑ Masters SB, Sullivan KA, Miller RT, Beiderman B, Lopez NG, Ramachandran J, Bourne HR. Carboxyl terminal domain of Gs alpha specifies coupling of receptors to stimulation of adenylyl cyclase. Science. 1988 Jul 22;241(4864):448-51. PMID:2899356
- ↑ 16.0 16.1 16.2 16.3 16.4 Wang M, Ramos BP, Paspalas CD, Shu Y, Simen A, Duque A, Vijayraghavan S, Brennan A, Dudley A, Nou E, Mazer JA, McCormick DA, Arnsten AF. Alpha2A-adrenoceptors strengthen working memory networks by inhibiting cAMP-HCN channel signaling in prefrontal cortex. Cell. 2007 Apr 20;129(2):397-410. PMID:17448997 doi:10.1016/j.cell.2007.03.015
- ↑ 17.00 17.01 17.02 17.03 17.04 17.05 17.06 17.07 17.08 17.09 17.10 17.11 17.12 17.13 17.14 17.15 17.16 17.17 17.18 17.19 17.20 17.21 17.22 17.23 17.24 17.25 17.26 17.27 17.28 17.29 17.30 17.31 17.32 17.33 17.34 17.35 17.36 Tews I, Findeisen F, Sinning I, Schultz A, Schultz JE, Linder JU. The structure of a pH-sensing mycobacterial adenylyl cyclase holoenzyme. Science. 2005 May 13;308(5724):1020-3. PMID:15890882 doi:http://dx.doi.org/308/5724/1020
- ↑ 18.0 18.1 18.2 Tesmer JJ, Sunahara RK, Johnson RA, Gosselin G, Gilman AG, Sprang SR. Two-metal-Ion catalysis in adenylyl cyclase. Science. 1999 Jul 30;285(5428):756-60. PMID:10427002
- ↑ Tesmer JJ, Dessauer CW, Sunahara RK, Murray LD, Johnson RA, Gilman AG, Sprang SR. Molecular basis for P-site inhibition of adenylyl cyclase. Biochemistry. 2000 Nov 28;39(47):14464-71. PMID:11087399
- ↑ 20.0 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 Findeisen F, Linder JU, Schultz A, Schultz JE, Brugger B, Wieland F, Sinning I, Tews I. The structure of the regulatory domain of the adenylyl cyclase Rv1264 from Mycobacterium tuberculosis with bound oleic acid. J Mol Biol. 2007 Jun 22;369(5):1282-95. Epub 2007 Apr 12. PMID:17482646 doi:10.1016/j.jmb.2007.04.013
- ↑ Glickman MS, Jacobs WR Jr. Microbial pathogenesis of Mycobacterium tuberculosis: dawn of a discipline. Cell. 2001 Feb 23;104(4):477-85. PMID:11239406
- ↑ Channon JY, Kasper LH. Parasite subversion of the host cell endocytic network. Parasitol Today. 1995 Feb;11(2):47-8. PMID:15275372
- ↑ Warner DF, Mizrahi V. The survival kit of Mycobacterium tuberculosis. Nat Med. 2007 Mar;13(3):282-4. PMID:17342138 doi:10.1038/nm0307-282
- ↑ Lowrie DB, Jackett PS, Ratcliffe NA. Mycobacterium microti may protect itself from intracellular destruction by releasing cyclic AMP into phagosomes. Nature. 1975 Apr 17;254(5501):600-2. PMID:165421
- ↑ Rickman L, Scott C, Hunt DM, Hutchinson T, Menendez MC, Whalan R, Hinds J, Colston MJ, Green J, Buxton RS. A member of the cAMP receptor protein family of transcription regulators in Mycobacterium tuberculosis is required for virulence in mice and controls transcription of the rpfA gene coding for a resuscitation promoting factor. Mol Microbiol. 2005 Jun;56(5):1274-86. PMID:15882420 doi:10.1111/j.1365-2958.2005.04609.x
Proteopedia Page Contributors and Editors (what is this?)
Alexander Berchansky, Michal Harel, David Canner, Basavraj Khanppnavar, Travis Eyford, Joel L. Sussman
