Hen Egg-White (HEW) Lysozyme

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 61: Line 61:
<scene name='User:Judy_Voet/Lysozyme/Lysozyme1_hexamer/7'>hexasaccharide</scene> that fits into the cleft, labeling the sugar subsites A-F<ref> coordinates of the model kindly provided by Louise Johnson</ref>. Alternately click on <scene name='User:Judy_Voet/Lysozyme/Lysozyme1/15'>trisaccharide</scene> and <scene name='User:Judy_Voet/Lysozyme/Lysozyme1_hexamer/7'>hexasaccharide</scene> to turn the modeled portion of the hexasaccharide on and off.
<scene name='User:Judy_Voet/Lysozyme/Lysozyme1_hexamer/7'>hexasaccharide</scene> that fits into the cleft, labeling the sugar subsites A-F<ref> coordinates of the model kindly provided by Louise Johnson</ref>. Alternately click on <scene name='User:Judy_Voet/Lysozyme/Lysozyme1/15'>trisaccharide</scene> and <scene name='User:Judy_Voet/Lysozyme/Lysozyme1_hexamer/7'>hexasaccharide</scene> to turn the modeled portion of the hexasaccharide on and off.
-
The interesting thing about the model was that the only way that the hexasaccharide would fit into the cleft was if the 4th saccharide (in subsite D) was strained into a <scene name='User:Judy_Voet/Lysozyme/Half-chair/2'>half-chair conformation</scene>. This conformation is what would be necessary for the formation of an oxocarbonium ion (oxionium ion). When the model was studied, <scene name='User:Judy_Voet/Lysozyme/Glu_35/1'>Glu 35</scene> was found to be in an ideal location to act as a general acid catalyst, 3.34 Angstroms from the bridging oxygen between the 4th and 5th saccharide units. <scene name='User:Judy_Voet/Lysozyme/Asp_52/2'>Asp 52</scene> appeared to be too far away (2.69 angstroms) in the static lysozyme structure to have formed a covalent bond with C1 of the half-chair model in the D site, and no covalent intermediate had ever been detected, so Phillips proposed that it acted as an electrostatic stabilizer of the oxonium ion (referred to as The Phillips Mechanism).
+
The interesting thing about the model was that the only way that the hexasaccharide would fit into the cleft was if the 4th saccharide (in subsite D) was strained into a <scene name='User:Judy_Voet/Lysozyme/Half-chair/2'>half-chair conformation</scene>. This conformation is what would be necessary for the formation of an oxocarbonium ion (oxionium ion). When the model was studied, <scene name='37/376372/Glu_35/1'>Glu 35</scene> was found to be in an ideal location to act as a general acid catalyst, 3.34 Angstroms from the bridging oxygen between the 4th and 5th saccharide units. <scene name='User:Judy_Voet/Lysozyme/Asp_52/2'>Asp 52</scene> appeared to be too far away (2.69 angstroms) in the static lysozyme structure to have formed a covalent bond with C1 of the half-chair model in the D site, and no covalent intermediate had ever been detected, so Phillips proposed that it acted as an electrostatic stabilizer of the oxonium ion (referred to as The Phillips Mechanism).

Revision as of 05:25, 25 November 2018

Glycosylated hen egg white lysozyme (PDB code 1hew)

Drag the structure with the mouse to rotate

See Also

References

  1. Lysozyme. 2010. Citizendium.org. http://en.citizendium.org/wiki/Lysozyme
  2. Lysozyme. 2008. Lysozyme.co.uk. http://lysozyme.co.uk/
  3. Lysozyme, 2008. Lysozyme.co.uk. http://lysozyme.co.uk/
  4. Bugg, T. 1997. An Introduction to Enzyme and Coenzyme Chemistry. Blackwell Science Ltd., Oxford
  5. 1967. Proc R Soc Lond B Bio 167 (1009): 389–401.
  6. Image from: http://www.vuw.ac.nz/staff/paul_teesdale-spittle/essentials/chapter-6/proteins/lysozyme.htm
  7. http://mcdb-webarchive.mcdb.ucsb.edu/sears/biochemistry/tw-enz/lysozyme/HEWL/lysozyme-overview.htm
  8. http://www.worthington-biochem.com/ly/default.html
  9. Image from: http://www.google.com/imgres?imgurl=http://www.vuw.ac.nz/staff/paul_teesdale-spittle/essentials/chapter-6/pics-and-strucs/lysozyme-mech.gif&imgrefurl=http://www.vuw.ac.nz/staff/paul_teesdale-spittle/essentials/chapter-6/proteins/lysozyme.htm&usg=__ormapG4XKg-tR5GrMSOdSMTV4vE=&h=603&w=801&sz=7&hl=en&start=17&zoom=1&tbnid=nvr9gvFrUILDkM:&tbnh=143&tbnw=189&prev=/images%3Fq%3DThe%2Blysozyme%2Breaction%2Bmechanism%26um%3D1%26hl%3Den%26sa%3DN%26biw%3D1280%26bih%3D647%26tbs%3Disch:10%2C304&um=1&itbs=1&iact=hc&vpx=521&vpy=349&dur=448&hovh=191&hovw=254&tx=140&ty=48&ei=JQ_LTPKzLIjCsAPkzt2KDg&oei=IA_LTP74OsG78gapm-GFAQ&esq=2&page=2&ndsp=18&ved=1t:429,r:2,s:17&biw=1280&bih=647
  10. Lysozyme, 2008. Lysozyme.co.uk. http://lysozyme.co.uk/
  11. Pratt, C.W., Voet, D., Voet, J.G. Fundamentals of Biochemistry - Life at the Molecular Level - Third Edition. Voet, Voet and Pratt, 2008.
  12. Johnson LN, Phillips DC. Structure of some crystalline lysozyme-inhibitor complexes determined by X-ray analysis at 6 Angstrom resolution. Nature. 1965 May 22;206(986):761-3. PMID:5840126
  13. Phillips, D. C. The hen egg white lysozyme molecule. Proc. Natl Acad. Sci. USA 57, 483-495 (1967)
  14. coordinates of the model kindly provided by Louise Johnson
  15. Vocadlo DJ, Davies GJ, Laine R, Withers SG. Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate. Nature. 2001 Aug 23;412(6849):835-8. PMID:11518970 doi:10.1038/35090602
Personal tools