5zpf

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 3: Line 3:
<StructureSection load='5zpf' size='340' side='right' caption='[[5zpf]], [[Resolution|resolution]] 1.76&Aring;' scene=''>
<StructureSection load='5zpf' size='340' side='right' caption='[[5zpf]], [[Resolution|resolution]] 1.76&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[5zpf]] is a 2 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5ZPF OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5ZPF FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[5zpf]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/"achromobacter_globiformis"_(conn_1928)_bergey_et_al._1930 "achromobacter globiformis" (conn 1928) bergey et al. 1930]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5ZPF OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5ZPF FirstGlance]. <br>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CU:COPPER+(II)+ION'>CU</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr>
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CU:COPPER+(II)+ION'>CU</scene>, <scene name='pdbligand=NA:SODIUM+ION'>NA</scene></td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=TYQ:3-AMINO-6-HYDROXY-TYROSINE'>TYQ</scene></td></tr>
<tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=TYQ:3-AMINO-6-HYDROXY-TYROSINE'>TYQ</scene></td></tr>
Line 9: Line 9:
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5zpf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5zpf OCA], [http://pdbe.org/5zpf PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5zpf RCSB], [http://www.ebi.ac.uk/pdbsum/5zpf PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5zpf ProSAT]</span></td></tr>
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5zpf FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5zpf OCA], [http://pdbe.org/5zpf PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5zpf RCSB], [http://www.ebi.ac.uk/pdbsum/5zpf PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5zpf ProSAT]</span></td></tr>
</table>
</table>
 +
<div style="background-color:#fffaf0;">
 +
== Publication Abstract from PubMed ==
 +
In the catalytic reaction of copper amine oxidase, the protein-derived redox cofactor topaquinone (TPQ) is reduced by an amine substrate to an aminoresorcinol form (TPQamr), which is in equilibrium with a semiquinone radical (TPQsq). The transition from TPQamr to TPQsq is an endothermic process, accompanied by a significant conformational change of the cofactor. We employed the humid air and glue-coating (HAG) method to capture the equilibrium mixture of TPQamr and TPQsq in noncryocooled crystals of the enzyme from Arthrobacter globiformis and found that the equilibrium shifts more toward TPQsq in crystals than in solution. Thermodynamic analyses of the temperature-dependent equilibrium also revealed that the transition to TPQsq is entropy-driven both in crystals and in solution, giving the thermodynamic parameters that led to experimental determination of the crystal packing effect. Furthermore, we demonstrate that the binding of product aldehyde to the hydrophobic pocket in the active site produces various equilibrium states among two forms of the product Schiff-base, TPQamr, and TPQsq, in a pH-dependent manner. The temperature-controlled HAG method provides a technique for thermodynamic analysis of conformational changes occurring in protein crystals that are hardly scrutinized by conventional cryogenic X-ray crystallography.
 +
 +
In crystallo thermodynamic analysis of conformational change of the topaquinone cofactor in bacterial copper amine oxidase.,Murakawa T, Baba S, Kawano Y, Hayashi H, Yano T, Kumasaka T, Yamamoto M, Tanizawa K, Okajima T Proc Natl Acad Sci U S A. 2018 Dec 18. pii: 1811837116. doi:, 10.1073/pnas.1811837116. PMID:30563857<ref>PMID:30563857</ref>
 +
 +
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
 +
</div>
 +
<div class="pdbe-citations 5zpf" style="background-color:#fffaf0;"></div>
 +
== References ==
 +
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>

Revision as of 06:17, 2 January 2019

Copper amine oxidase from Arthrobacter globiformis anaerobically reduced by ethylamine at pH 6 at 288 K (3)

5zpf, resolution 1.76Å

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools