3bxr
From Proteopedia
Line 1: | Line 1: | ||
[[Image:3bxr.jpg|left|200px]] | [[Image:3bxr.jpg|left|200px]] | ||
- | + | <!-- | |
- | + | The line below this paragraph, containing "STRUCTURE_3bxr", creates the "Structure Box" on the page. | |
- | + | You may change the PDB parameter (which sets the PDB file loaded into the applet) | |
- | + | or the SCENE parameter (which sets the initial scene displayed when the page is loaded), | |
- | + | or leave the SCENE parameter empty for the default display. | |
- | | | + | --> |
- | | | + | {{STRUCTURE_3bxr| PDB=3bxr | SCENE= }} |
- | + | ||
- | + | ||
- | }} | + | |
'''Crystal Structures Of Highly Constrained Substrate And Hydrolysis Products Bound To HIV-1 Protease. Implications For Catalytic Mechanism''' | '''Crystal Structures Of Highly Constrained Substrate And Hydrolysis Products Bound To HIV-1 Protease. Implications For Catalytic Mechanism''' | ||
Line 19: | Line 16: | ||
==About this Structure== | ==About this Structure== | ||
- | 3BXR is a [[Single protein]] structure | + | 3BXR is a [[Single protein]] structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3BXR OCA]. |
==Reference== | ==Reference== | ||
Line 34: | Line 31: | ||
[[Category: Tyndall, J D.]] | [[Category: Tyndall, J D.]] | ||
[[Category: Walsh, T.]] | [[Category: Walsh, T.]] | ||
- | [[Category: | + | [[Category: Aid]] |
- | [[Category: | + | [[Category: Aspartyl protease]] |
- | [[Category: | + | [[Category: Capsid maturation]] |
- | [[Category: | + | [[Category: Core protein]] |
- | [[Category: | + | [[Category: Cytoplasm]] |
- | [[Category: | + | [[Category: Dna integration]] |
- | [[Category: | + | [[Category: Dna recombination]] |
- | [[Category: | + | [[Category: Dna-directed dna polymerase]] |
- | [[Category: | + | [[Category: Endonuclease]] |
- | [[Category: | + | [[Category: Hiv protease]] |
- | [[Category: | + | [[Category: Hivpr]] |
- | [[Category: | + | [[Category: Hydrolase]] |
- | [[Category: | + | [[Category: Lipoprotein]] |
- | [[Category: | + | [[Category: Magnesium]] |
- | [[Category: | + | [[Category: Mechanism]] |
- | [[Category: | + | [[Category: Membrane]] |
- | [[Category: | + | [[Category: Metal-binding]] |
- | [[Category: | + | [[Category: Multifunctional enzyme]] |
- | [[Category: | + | [[Category: Myristate]] |
- | [[Category: | + | [[Category: Nuclease]] |
- | [[Category: | + | [[Category: Nucleotidyltransferase]] |
- | [[Category: | + | [[Category: Nucleus]] |
- | [[Category: | + | [[Category: Phosphoprotein]] |
- | [[Category: | + | [[Category: Product]] |
- | [[Category: | + | [[Category: Rna-binding]] |
- | [[Category: | + | [[Category: Rna-directed dna polymerase]] |
- | [[Category: | + | [[Category: Substrate]] |
- | [[Category: | + | [[Category: Transferase]] |
- | [[Category: | + | [[Category: Viral nucleoprotein]] |
- | [[Category: | + | [[Category: Virion]] |
- | [[Category: | + | [[Category: Zinc]] |
- | [[Category: | + | [[Category: Zinc-finger]] |
- | + | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on Sun May 4 21:11:40 2008'' | |
- | ''Page seeded by [http://oca.weizmann.ac.il/oca OCA ] on | + |
Revision as of 18:11, 4 May 2008
Crystal Structures Of Highly Constrained Substrate And Hydrolysis Products Bound To HIV-1 Protease. Implications For Catalytic Mechanism
Overview
HIV-1 protease is a key target in treating HIV infection and AIDS, with 10 inhibitors used clinically. Here we used an unusual hexapeptide substrate, containing two macrocyclic tripeptides constrained to mimic a beta strand conformation, linked by a scissile peptide bond, to probe the structural mechanism of proteolysis. The substrate has been cocrystallized with catalytically active synthetic HIV-1 protease and an inactive isosteric (D25N) mutant, and three-dimensional structures were determined (1.60 A). The structure of the inactive HIVPR(D25N)/substrate complex shows an intact substrate molecule in a single orientation that perfectly mimics the binding of conventional peptide ligands of HIVPR. The structure of the active HIVPR/product complex shows two monocyclic hydrolysis products trapped in the active site, revealing two molecules of the N-terminal monocyclic product bound adjacent to one another, one molecule occupying the nonprime site, as expected, and the other monocycle binding in the prime site in the reverse orientation. The results suggest that both hydrolysis products are released from the active site upon cleavage and then rebind to the enzyme. These structures reveal that N-terminal binding of ligands is preferred, that the C-terminal site is more flexible, and that HIVPR can recognize substrate shape rather than just sequence alone. The product complex reveals three carboxylic acids in an almost planar orientation, indicating an unusual hexagonal homodromic complex between three carboxylic acids. The data presented herein regarding orientation of catalytic aspartates support the cleavage mechanism proposed by Northrop. The results imply strategies for design of inhibitors targeting the N-terminal side of the cleavage site or taking advantage of the flexibility in the protease domain that accommodates substrate/inhibitor segments C-terminal to the cleavage site.
About this Structure
3BXR is a Single protein structure. Full crystallographic information is available from OCA.
Reference
Crystal Structures of Highly Constrained Substrate and Hydrolysis Products Bound to HIV-1 Protease. Implications for the Catalytic Mechanism., Tyndall JD, Pattenden LK, Reid RC, Hu SH, Alewood D, Alewood PF, Walsh T, Fairlie DP, Martin JL, Biochemistry. 2008 Mar 25;47(12):3736-44. Epub 2008 Mar 1. PMID:18311928 Page seeded by OCA on Sun May 4 21:11:40 2008
Categories: HIV-1 retropepsin | Single protein | Alewood, D. | Alewood, P F. | Fairlie, D P. | Hu, S H. | Martin, J L. | Pattenden, L K. | Reid, R C. | Tyndall, J D. | Walsh, T. | Aid | Aspartyl protease | Capsid maturation | Core protein | Cytoplasm | Dna integration | Dna recombination | Dna-directed dna polymerase | Endonuclease | Hiv protease | Hivpr | Hydrolase | Lipoprotein | Magnesium | Mechanism | Membrane | Metal-binding | Multifunctional enzyme | Myristate | Nuclease | Nucleotidyltransferase | Nucleus | Phosphoprotein | Product | Rna-binding | Rna-directed dna polymerase | Substrate | Transferase | Viral nucleoprotein | Virion | Zinc | Zinc-finger