6dqg

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Current revision (14:36, 13 March 2024) (edit) (undo)
 
Line 1: Line 1:
==Human glutamate dehydrogenase, H454Y mutant==
==Human glutamate dehydrogenase, H454Y mutant==
-
<StructureSection load='6dqg' size='340' side='right' caption='[[6dqg]], [[Resolution|resolution]] 2.70&Aring;' scene=''>
+
<StructureSection load='6dqg' size='340' side='right'caption='[[6dqg]], [[Resolution|resolution]] 2.70&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[6dqg]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6DQG OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6DQG FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[6dqg]] is a 6 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6DQG OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6DQG FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr>
+
</td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.7&#8491;</td></tr>
-
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GLUD1, GLUD ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
+
<tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=PO4:PHOSPHATE+ION'>PO4</scene></td></tr>
-
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glutamate_dehydrogenase_(NAD(P)(+)) Glutamate dehydrogenase (NAD(P)(+))], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.4.1.3 1.4.1.3] </span></td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6dqg FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6dqg OCA], [https://pdbe.org/6dqg PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6dqg RCSB], [https://www.ebi.ac.uk/pdbsum/6dqg PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6dqg ProSAT]</span></td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6dqg FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6dqg OCA], [http://pdbe.org/6dqg PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6dqg RCSB], [http://www.ebi.ac.uk/pdbsum/6dqg PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6dqg ProSAT]</span></td></tr>
+
</table>
</table>
== Disease ==
== Disease ==
-
[[http://www.uniprot.org/uniprot/DHE3_HUMAN DHE3_HUMAN]] Defects in GLUD1 are the cause of familial hyperinsulinemic hypoglycemia type 6 (HHF6) [MIM:[http://omim.org/entry/606762 606762]]; also known as hyperinsulinism-hyperammonemia syndrome (HHS). Familial hyperinsulinemic hypoglycemia [MIM:[http://omim.org/entry/256450 256450]], also referred to as congenital hyperinsulinism, nesidioblastosis, or persistent hyperinsulinemic hypoglycemia of infancy (PPHI), is the most common cause of persistent hypoglycemia in infancy and is due to defective negative feedback regulation of insulin secretion by low glucose levels. In HHF6 elevated oxidation rate of glutamate to alpha-ketoglutarate stimulates insulin secretion in the pancreatic beta cells, while they impair detoxification of ammonium in the liver.<ref>PMID:9571255</ref> <ref>PMID:10636977</ref> <ref>PMID:11214910</ref> <ref>PMID:11297618</ref>
+
[https://www.uniprot.org/uniprot/DHE3_HUMAN DHE3_HUMAN] Defects in GLUD1 are the cause of familial hyperinsulinemic hypoglycemia type 6 (HHF6) [MIM:[https://omim.org/entry/606762 606762]; also known as hyperinsulinism-hyperammonemia syndrome (HHS). Familial hyperinsulinemic hypoglycemia [MIM:[https://omim.org/entry/256450 256450], also referred to as congenital hyperinsulinism, nesidioblastosis, or persistent hyperinsulinemic hypoglycemia of infancy (PPHI), is the most common cause of persistent hypoglycemia in infancy and is due to defective negative feedback regulation of insulin secretion by low glucose levels. In HHF6 elevated oxidation rate of glutamate to alpha-ketoglutarate stimulates insulin secretion in the pancreatic beta cells, while they impair detoxification of ammonium in the liver.<ref>PMID:9571255</ref> <ref>PMID:10636977</ref> <ref>PMID:11214910</ref> <ref>PMID:11297618</ref>
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/DHE3_HUMAN DHE3_HUMAN]] May be involved in learning and memory reactions by increasing the turnover of the excitatory neurotransmitter glutamate (By similarity).
+
[https://www.uniprot.org/uniprot/DHE3_HUMAN DHE3_HUMAN] May be involved in learning and memory reactions by increasing the turnover of the excitatory neurotransmitter glutamate (By similarity).
-
<div style="background-color:#fffaf0;">
+
-
== Publication Abstract from PubMed ==
+
-
Mammalian glutamate dehydrogenase (GDH) has complex allosteric regulation and the loss of GTP inhibition causes the hyperinsulinism/hyperammonemia syndrome (HHS) where insulin is hypersecreted upon consumption of protein. The archetypical HHS lesion is H454Y and lies in the GTP binding pocket. To better understand the mechanism of HHS, we determined the crystal structure of H454Y. When the bovine GDH crystal structures were minimized to prepare for further computational analysis, unusually large deviations were found at the allosteric NADH binding site due to chemical sequence errors. Notably, 387 lies in an allosteric where several activators and inhibitors bind and should be lysine rather than asparagine. All structures were re-refined and the consequence of this sequence error on NADH binding was calculated using free energy perturbation. The binding free energy penalty going from the correct to incorrect sequence found is +5 kcal/mol per site and therefore has a significant impact on drug development. BROADER AUDIENCE ABSTRACT: Glutamate dehydrogenase is a key enzyme involved in amino acid catabolism. As such, it is heavily regulated in animals by a wide array of metabolites. The importance of this regulation is most apparent in a genetic disorder called hyperinsulinism/hyperammonemia (HHS) where patients hypersecrete insulin upon the consumption of protein. We determined the atomic structure of one of these HHS mutants to better understand the disease and also analyzed an allosteric regulatory site.
+
-
Glutamate dehydrogenase: Structure of a hyperinsulinism mutant, corrections to the atomic model, and insights into a regulatory site.,Nassar OM, Li C, Stanley CA, Pettitt BM, Smith TJ Proteins. 2019 Jan;87(1):41-50. doi: 10.1002/prot.25620. Epub 2018 Nov 18. PMID:30367518<ref>PMID:30367518</ref>
+
==See Also==
-
 
+
*[[Glutamate dehydrogenase 3D structures|Glutamate dehydrogenase 3D structures]]
-
From MEDLINE&reg;/PubMed&reg;, a database of the U.S. National Library of Medicine.<br>
+
-
</div>
+
-
<div class="pdbe-citations 6dqg" style="background-color:#fffaf0;"></div>
+
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
</StructureSection>
</StructureSection>
-
[[Category: Human]]
+
[[Category: Homo sapiens]]
-
[[Category: Smith, T J]]
+
[[Category: Large Structures]]
-
[[Category: Dehydrogenase]]
+
[[Category: Smith TJ]]
-
[[Category: Glutamate]]
+
-
[[Category: Hyperinsulinism]]
+
-
[[Category: Insulin]]
+
-
[[Category: Oxidoreductase]]
+

Current revision

Human glutamate dehydrogenase, H454Y mutant

PDB ID 6dqg

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools