User:Estelle Blochouse/ Sandbox 1497

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 4: Line 4:
-
Copper is one of the most important metallic cofactor involved in enzyme catalysed reactions. In living organisms, its function is related to the redox properties of copper. However it is toxic at all concentration, therefore it needs to be strictly controlled by molecular mechanisms.<ref>EMBL-EBI, Family: Cu-oxidase (PF00394), Summary: Multicopper oxidase, http://pfam.xfam.org/family/Cu-oxidase</ref>
+
Copper is one of the most important metallic cofactor involved in enzyme catalysed reactions. In living organisms, its function is related to its redox properties. However, copper is toxic at all concentration, therefore it needs to be strictly controlled by molecular mechanisms.<ref>EMBL-EBI, Family: Cu-oxidase (PF00394), Summary: Multicopper oxidase, http://pfam.xfam.org/family/Cu-oxidase</ref>
== Function ==
== Function ==
-
Multicopper oxidases are enzymes involved in copper homeostasis. Indeed, free copper present in a cell (so, not bounded to a protein) is harmful and can cause cellular damage. It needs to be regulated.
+
Multicopper oxidases are enzymes involved in copper homeostasis. Indeed, free copper present in a cell (so, not bounded to a protein) is harmful and can cause cellular damage. It needs to be regulated. So, multicopper oxydases CueO 4e9s is essential.
Multicopper oxidase acts probably for the detoxification of copper present in the periplasmic space. It oxidizes the Cu+ into Cu2+ and prevents its uptake by the cytoplasm. It also possesses a phenoloxidase and a ferroxidase activity which can be involved in the prevention of oxidative damage.<ref><span class='plainlinks'>[https://www.uniprot.org/uniprot/P36649 UniProtKB]</span></ref>
Multicopper oxidase acts probably for the detoxification of copper present in the periplasmic space. It oxidizes the Cu+ into Cu2+ and prevents its uptake by the cytoplasm. It also possesses a phenoloxidase and a ferroxidase activity which can be involved in the prevention of oxidative damage.<ref><span class='plainlinks'>[https://www.uniprot.org/uniprot/P36649 UniProtKB]</span></ref>

Revision as of 20:13, 11 January 2019

Multicopper Oxidase CueO (4e9s)

4e9s, resolution 1.06Å

Drag the structure with the mouse to rotate

References

  1. EMBL-EBI, Family: Cu-oxidase (PF00394), Summary: Multicopper oxidase, http://pfam.xfam.org/family/Cu-oxidase
  2. UniProtKB
  3. Messerschmidt A, Huber R, The blue oxidases, ascorbate oxidase, laccase and ceruloplasmin. Modelling and structural relationships, Eur. J. Biochem. 187, January 1990
  4. Ouzounis C, Sander C, A structure-derived sequence pattern for the detection of type I copper binding domains in distantly related proteins, FEBS Lett. volume 279, February 1991
  5. Hirofumi Komori, Ryosuke Sugiyama, Kunishige Kataoka, Kentaro Miyazaki, Yoshiki Higuchib, and Takeshi Sakurai, New insights into the catalytic active-site structure of multicopper oxidases, Biological Crystallography, 6 December 2013 doi:10.1107/S1399004713033051
  6. RCBS PDB
  7. RCBS PDB
  8. RCBS PDB
  9. RCBS PDB
  10. RCBS PDB
  11. RCBS PDB
  12. Kataoka K, Komori H, Ueki Y, Konno Y, Kamitaka Y, Kurose S, Tsujimura S, Higuchi Y, Kano K, Seo D, Sakurai T. Structure and function of the engineered multicopper oxidase CueO from Escherichia coli--deletion of the methionine-rich helical region covering the substrate-binding site. J Mol Biol. 2007 Oct 12;373(1):141-52. Epub 2007 Aug 2. PMID:17804014 doi:10.1016/j.jmb.2007.07.041

Proteopedia Page Contributors and Editors (what is this?)

Estelle Blochouse

Personal tools