5zx3
From Proteopedia
(Difference between revisions)
Line 3: | Line 3: | ||
<StructureSection load='5zx3' size='340' side='right'caption='[[5zx3]], [[Resolution|resolution]] 2.75Å' scene=''> | <StructureSection load='5zx3' size='340' side='right'caption='[[5zx3]], [[Resolution|resolution]] 2.75Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[5zx3]] is a 6 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5ZX3 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5ZX3 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5zx3]] is a 6 chain structure with sequence from [http://en.wikipedia.org/wiki/Myctu Myctu]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5ZX3 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5ZX3 FirstGlance]. <br> |
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | ||
+ | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">rpoA, Rv3457c, MTCY13E12.10c ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83332 MYCTU]), rpoB, Rv0667, MTCI376.08c ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83332 MYCTU]), rpoC, Rv0668, MTCI376.07c ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83332 MYCTU]), rpoZ, Rv1390, MTCY21B4.07 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83332 MYCTU]), sigH, rpoE, Rv3223c, MTCY07D11.03 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=83332 MYCTU])</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/DNA-directed_RNA_polymerase DNA-directed RNA polymerase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.6 2.7.7.6] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/DNA-directed_RNA_polymerase DNA-directed RNA polymerase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.7.6 2.7.7.6] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5zx3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5zx3 OCA], [http://pdbe.org/5zx3 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5zx3 RCSB], [http://www.ebi.ac.uk/pdbsum/5zx3 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5zx3 ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5zx3 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5zx3 OCA], [http://pdbe.org/5zx3 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5zx3 RCSB], [http://www.ebi.ac.uk/pdbsum/5zx3 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5zx3 ProSAT]</span></td></tr> | ||
Line 10: | Line 11: | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/RPOZ_MYCTU RPOZ_MYCTU]] Promotes RNA polymerase assembly. Latches the N- and C-terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits.<ref>PMID:22570422</ref> [[http://www.uniprot.org/uniprot/RPOA_MYCTU RPOA_MYCTU]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.[HAMAP-Rule:MF_00059]<ref>PMID:22570422</ref> [[http://www.uniprot.org/uniprot/RPOC_MYCTU RPOC_MYCTU]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.[HAMAP-Rule:MF_01322]<ref>PMID:22570422</ref> [[http://www.uniprot.org/uniprot/RPOB_MYCTU RPOB_MYCTU]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.[HAMAP-Rule:MF_01321] [[http://www.uniprot.org/uniprot/SIGH_MYCTU SIGH_MYCTU]] Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. Extracytoplasmic function (ECF) sigma factors are held in an inactive form by a cognate anti-sigma factor (RshA) until released. This sigma factor is involved in heat shock and oxidative stress responses; it positively regulates the expression of itself, sigE, sigB and a number of transcriptional regulators as well as other effectors of heat and oxidative stress, leading to direct and indirect control of up to 25% of the bacterial genome. Modulates expression of host genes for intercrine beta (chemokine CC) and apoptosis, altering the host immune response.<ref>PMID:11567012</ref> <ref>PMID:12123450</ref> <ref>PMID:14617153</ref> <ref>PMID:16298337</ref> | [[http://www.uniprot.org/uniprot/RPOZ_MYCTU RPOZ_MYCTU]] Promotes RNA polymerase assembly. Latches the N- and C-terminal regions of the beta' subunit thereby facilitating its interaction with the beta and alpha subunits.<ref>PMID:22570422</ref> [[http://www.uniprot.org/uniprot/RPOA_MYCTU RPOA_MYCTU]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.[HAMAP-Rule:MF_00059]<ref>PMID:22570422</ref> [[http://www.uniprot.org/uniprot/RPOC_MYCTU RPOC_MYCTU]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.[HAMAP-Rule:MF_01322]<ref>PMID:22570422</ref> [[http://www.uniprot.org/uniprot/RPOB_MYCTU RPOB_MYCTU]] DNA-dependent RNA polymerase catalyzes the transcription of DNA into RNA using the four ribonucleoside triphosphates as substrates.[HAMAP-Rule:MF_01321] [[http://www.uniprot.org/uniprot/SIGH_MYCTU SIGH_MYCTU]] Sigma factors are initiation factors that promote the attachment of RNA polymerase to specific initiation sites and are then released. Extracytoplasmic function (ECF) sigma factors are held in an inactive form by a cognate anti-sigma factor (RshA) until released. This sigma factor is involved in heat shock and oxidative stress responses; it positively regulates the expression of itself, sigE, sigB and a number of transcriptional regulators as well as other effectors of heat and oxidative stress, leading to direct and indirect control of up to 25% of the bacterial genome. Modulates expression of host genes for intercrine beta (chemokine CC) and apoptosis, altering the host immune response.<ref>PMID:11567012</ref> <ref>PMID:12123450</ref> <ref>PMID:14617153</ref> <ref>PMID:16298337</ref> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Bacterial RNA polymerase employs extra-cytoplasmic function (ECF) sigma factors to regulate context-specific gene expression programs. Despite being the most abundant and divergent sigma factor class, the structural basis of ECF sigma factor-mediated transcription initiation remains unknown. Here, we determine a crystal structure of Mycobacterium tuberculosis (Mtb) RNAP holoenzyme comprising an RNAP core enzyme and the ECF sigma factor sigma(H) (sigma(H)-RNAP) at 2.7 A, and solve another crystal structure of a transcription initiation complex of Mtb sigma(H)-RNAP (sigma(H)-RPo) comprising promoter DNA and an RNA primer at 2.8 A. The two structures together reveal the interactions between sigma(H) and RNAP that are essential for sigma(H)-RNAP holoenzyme assembly as well as the interactions between sigma(H)-RNAP and promoter DNA responsible for stringent promoter recognition and for promoter unwinding. Our study establishes that ECF sigma factors and primary sigma factors employ distinct mechanisms for promoter recognition and for promoter unwinding. | ||
+ | |||
+ | Structural basis for transcription initiation by bacterial ECF sigma factors.,Li L, Fang C, Zhuang N, Wang T, Zhang Y Nat Commun. 2019 Mar 11;10(1):1153. doi: 10.1038/s41467-019-09096-y. PMID:30858373<ref>PMID:30858373</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 5zx3" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> | ||
Line 16: | Line 26: | ||
[[Category: DNA-directed RNA polymerase]] | [[Category: DNA-directed RNA polymerase]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
+ | [[Category: Myctu]] | ||
[[Category: Li, L]] | [[Category: Li, L]] | ||
[[Category: Zhang, Y]] | [[Category: Zhang, Y]] |
Revision as of 06:57, 27 March 2019
Mycobacterium tuberculosis RNA polymerase holoenzyme with ECF sigma factor sigma H
|