|
|
Line 3: |
Line 3: |
| <StructureSection load='6ht2' size='340' side='right'caption='[[6ht2]], [[Resolution|resolution]] 2.60Å' scene=''> | | <StructureSection load='6ht2' size='340' side='right'caption='[[6ht2]], [[Resolution|resolution]] 2.60Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6ht2]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Gallus_gallus Gallus gallus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6HT2 OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6HT2 FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6ht2]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Gallus_gallus Gallus gallus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6HT2 OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6HT2 FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.6Å</td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[1b2k|1b2k]], [[1hf4|1hf4]], [[1lcn|1lcn]], [[1lkr|1lkr]], [[5lym|5lym]], [[5ocv|5ocv]], [[5o4w|5o4w]], [[5a3e|5a3e]], [[5k7o|5k7o]], [[5j6k|5j6k]], [[3j4g|3j4g]]</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Lysozyme Lysozyme], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.17 3.2.1.17] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6ht2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6ht2 OCA], [https://pdbe.org/6ht2 PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6ht2 RCSB], [https://www.ebi.ac.uk/pdbsum/6ht2 PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6ht2 ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6ht2 FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6ht2 OCA], [http://pdbe.org/6ht2 PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6ht2 RCSB], [http://www.ebi.ac.uk/pdbsum/6ht2 PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6ht2 ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/LYSC_CHICK LYSC_CHICK]] Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents. Has bacteriolytic activity against M.luteus.<ref>PMID:22044478</ref> | + | [https://www.uniprot.org/uniprot/LYSC_CHICK LYSC_CHICK] Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents. Has bacteriolytic activity against M.luteus.<ref>PMID:22044478</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 20: |
Line 19: |
| </div> | | </div> |
| <div class="pdbe-citations 6ht2" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 6ht2" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Lysozyme 3D structures|Lysozyme 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
Line 26: |
Line 28: |
| [[Category: Gallus gallus]] | | [[Category: Gallus gallus]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Lysozyme]]
| + | [[Category: Garau G]] |
- | [[Category: Garau, G]] | + | |
- | [[Category: Chloride]]
| + | |
- | [[Category: Crystal]]
| + | |
- | [[Category: Diffraction]]
| + | |
- | [[Category: Ed]]
| + | |
- | [[Category: Electron]]
| + | |
- | [[Category: Hewl]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Microfocus]]
| + | |
| Structural highlights
Function
LYSC_CHICK Lysozymes have primarily a bacteriolytic function; those in tissues and body fluids are associated with the monocyte-macrophage system and enhance the activity of immunoagents. Has bacteriolytic activity against M.luteus.[1]
Publication Abstract from PubMed
Recent advances in 3D electron diffraction have allowed the structure determination of several model proteins from submicrometric crystals, the unit-cell parameters and structures of which could be immediately validated by known models previously obtained by X-ray crystallography. Here, the first new protein structure determined by 3D electron diffraction data is presented: a previously unobserved polymorph of hen egg-white lysozyme. This form, with unit-cell parameters a = 31.9, b = 54.4, c = 71.8 A, beta = 98.8 degrees , grows as needle-shaped submicrometric crystals simply by vapor diffusion starting from previously reported crystallization conditions. Remarkably, the data were collected using a low-dose stepwise experimental setup consisting of a precession-assisted nanobeam of approximately 150 nm, which has never previously been applied for solving protein structures. The crystal structure was additionally validated using X-ray synchrotron-radiation sources by both powder diffraction and single-crystal micro-diffraction. 3D electron diffraction can be used for the structural characterization of submicrometric macromolecular crystals and is able to identify novel protein polymorphs that are hardly visible in conventional X-ray diffraction experiments. Additionally, the analysis, which was performed on both nanocrystals and microcrystals from the same crystallization drop, suggests that an integrated view from 3D electron diffraction and X-ray microfocus diffraction can be applied to obtain insights into the molecular dynamics during protein crystal growth.
Nanobeam precession-assisted 3D electron diffraction reveals a new polymorph of hen egg-white lysozyme.,Lanza A, Margheritis E, Mugnaioli E, Cappello V, Garau G, Gemmi M IUCrJ. 2019 Jan 15;6(Pt 2):178-188. doi: 10.1107/S2052252518017657. eCollection, 2019 Mar 1. PMID:30867915[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Maehashi K, Matano M, Irisawa T, Uchino M, Kashiwagi Y, Watanabe T. Molecular characterization of goose- and chicken-type lysozymes in emu (Dromaius novaehollandiae): evidence for extremely low lysozyme levels in emu egg white. Gene. 2012 Jan 15;492(1):244-9. doi: 10.1016/j.gene.2011.10.021. Epub 2011 Oct, 25. PMID:22044478 doi:10.1016/j.gene.2011.10.021
- ↑ Lanza A, Margheritis E, Mugnaioli E, Cappello V, Garau G, Gemmi M. Nanobeam precession-assisted 3D electron diffraction reveals a new polymorph of hen egg-white lysozyme. IUCrJ. 2019 Jan 15;6(Pt 2):178-188. doi: 10.1107/S2052252518017657. eCollection, 2019 Mar 1. PMID:30867915 doi:http://dx.doi.org/10.1107/S2052252518017657
|