|
|
Line 3: |
Line 3: |
| <StructureSection load='4oud' size='340' side='right'caption='[[4oud]], [[Resolution|resolution]] 2.65Å' scene=''> | | <StructureSection load='4oud' size='340' side='right'caption='[[4oud]], [[Resolution|resolution]] 2.65Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4oud]] is a 2 chain structure with sequence from [http://en.wikipedia.org/wiki/Escherichia_coli_str._k-12_substr._mc4100 Escherichia coli str. k-12 substr. mc4100]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4OUD OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4OUD FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4oud]] is a 2 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli_str._K-12_substr._MC4100 Escherichia coli str. K-12 substr. MC4100]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4OUD OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4OUD FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=TYR:TYROSINE'>TYR</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BIF:(R)-2-AMINO-3-(4-PHENYLCYCLOHEXYL)PROPANOIC+ACID'>BIF</scene>, <scene name='pdbligand=TYR:TYROSINE'>TYR</scene></td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=BIF:(R)-2-AMINO-3-(4-PHENYLCYCLOHEXYL)PROPANOIC+ACID'>BIF</scene>, <scene name='pdbligand=UNK:UNKNOWN'>UNK</scene></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4oud FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4oud OCA], [https://pdbe.org/4oud PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4oud RCSB], [https://www.ebi.ac.uk/pdbsum/4oud PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4oud ProSAT]</span></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">tyrS, BN896_1452 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1403831 Escherichia coli str. K-12 substr. MC4100])</td></tr>
| + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Tyrosine--tRNA_ligase Tyrosine--tRNA ligase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=6.1.1.1 6.1.1.1] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4oud FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4oud OCA], [http://pdbe.org/4oud PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4oud RCSB], [http://www.ebi.ac.uk/pdbsum/4oud PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4oud ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/U6N9P2_ECOLI U6N9P2_ECOLI]] Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two-step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr).[HAMAP-Rule:MF_02006][SAAS:SAAS00105801] | + | [https://www.uniprot.org/uniprot/A0A0H2UKY9_ECOLI A0A0H2UKY9_ECOLI] Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two-step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr).[HAMAP-Rule:MF_02006] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 28: |
Line 25: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Escherichia coli str. k-12 substr. mc4100]] | + | [[Category: Escherichia coli str. K-12 substr. MC4100]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Tyrosine--tRNA ligase]]
| + | [[Category: Church GM]] |
- | [[Category: Church, G M]] | + | [[Category: Lajoie MJ]] |
- | [[Category: Lajoie, M J]] | + | [[Category: Mandell DJ]] |
- | [[Category: Mandell, D J]] | + | [[Category: Stoddard BL]] |
- | [[Category: Stoddard, B L]] | + | [[Category: Takeuchi R]] |
- | [[Category: Takeuchi, R]] | + | |
- | [[Category: Complex with l-tyrosine]]
| + | |
- | [[Category: Ligase]]
| + | |
- | [[Category: Rossmann fold]]
| + | |
- | [[Category: Trna]]
| + | |
| Structural highlights
Function
A0A0H2UKY9_ECOLI Catalyzes the attachment of tyrosine to tRNA(Tyr) in a two-step reaction: tyrosine is first activated by ATP to form Tyr-AMP and then transferred to the acceptor end of tRNA(Tyr).[HAMAP-Rule:MF_02006]
Publication Abstract from PubMed
Genetically modified organisms (GMOs) are increasingly deployed at large scales and in open environments. Genetic biocontainment strategies are needed to prevent unintended proliferation of GMOs in natural ecosystems. Existing biocontainment methods are insufficient because they impose evolutionary pressure on the organism to eject the safeguard by spontaneous mutagenesis or horizontal gene transfer, or because they can be circumvented by environmentally available compounds. Here we computationally redesign essential enzymes in the first organism possessing an altered genetic code (Escherichia coli strain C321.DeltaA) to confer metabolic dependence on non-standard amino acids for survival. The resulting GMOs cannot metabolically bypass their biocontainment mechanisms using known environmental compounds, and they exhibit unprecedented resistance to evolutionary escape through mutagenesis and horizontal gene transfer. This work provides a foundation for safer GMOs that are isolated from natural ecosystems by a reliance on synthetic metabolites.
Biocontainment of genetically modified organisms by synthetic protein design.,Mandell DJ, Lajoie MJ, Mee MT, Takeuchi R, Kuznetsov G, Norville JE, Gregg CJ, Stoddard BL, Church GM Nature. 2015 Feb 5;518(7537):55-60. doi: 10.1038/nature14121. Epub 2015 Jan 21. PMID:25607366[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Mandell DJ, Lajoie MJ, Mee MT, Takeuchi R, Kuznetsov G, Norville JE, Gregg CJ, Stoddard BL, Church GM. Biocontainment of genetically modified organisms by synthetic protein design. Nature. 2015 Feb 5;518(7537):55-60. doi: 10.1038/nature14121. Epub 2015 Jan 21. PMID:25607366 doi:http://dx.doi.org/10.1038/nature14121
|