User:Eliška Koutná/Sandbox 1

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 6: Line 6:
== Protein structure ==
== Protein structure ==
-
The PrPSc differs from PrPC solely in conformation and is its isoform. The mature PrPC consists of approx. 208 amino acids, arranged as a disordered N-terminus and a globular C-terminal domain consisting of three α-helices and a short, antiparallel β-pleated sheet. <ref>DOI 10.1038/382180a0</ref> <ref>DOI 10.1073/pnas.97.1.145</ref> There is a GPI membrane anchor at the C-terminus that tethers the protein to cell membranes and proteins that are secreted and lacking the anchor component has been proven to be unaffected by the infectious isoform <ref>DOI 10.1126/science.1110837</ref> In contrast to the natural form of prion protein with only about 3 % of β-sheet secondary structure, the PrPSc form has about 47 % of the secondary structure in β-sheets <ref name="pan">PMID 7902575</ref> that create a core of four-rung β-solenoid fold <ref>DOI 10.3390/pathogens7010020</ref>. Accordingly, they also differ in their properties. PrPC is soluble, has a life-span between 2 and 4 hours, and is sensitive to proteolytic cleavage – when exposed to proteases, the protein is degraded completely <ref name="pan" />. The two most important cleavage events are the α cleavage which removes the unstructured N-terminal tail and leaves the globular domain attached to the cell membrane, and the cleavage on the C-terminal end (termed PrPC shedding) which releases PrPC into the extracellular space <ref name="sig" />. Under the same conditions, PrPSc is hydrolysed by proteases only partially by forming resistant core fragment PrP 27-30 <ref name="pan" />. In addition, it is insoluble in detergents and has a very long half-life, therefore accumulates in tissues easily. It has a tendency to form aggregates and fibrillar structures and is generally susceptible to oligomerization, whereas the PrPC form mainly exist as a monomer <ref name="cohen">DOI 10.1146/annurev.biochem.67.1.793</ref>. Monomeric PrPSc has never been isolated.
+
The PrPSc differs from PrPC solely in conformation and is its isoform. The mature PrPC consists of approx. 208 amino acids, arranged as a disordered N-terminus and a globular C-terminal domain consisting of three α-helices and a short, antiparallel β-pleated sheet. <ref>DOI 10.1038/382180a0</ref> <ref>DOI 10.1073/pnas.97.1.145</ref> There is a GPI membrane anchor at the C-terminus that tethers the protein to cell membranes and proteins that are secreted and lacking the anchor component has been proven to be unaffected by the infectious isoform <ref>DOI 10.1126/science.1110837</ref> In contrast to the natural form of prion protein with only about 3 % of β-sheet secondary structure, the PrPSc form has about 47 % of the secondary structure in β-sheets <ref name="pan">PMID 7902575</ref> that create a core of four-rung β-solenoid fold <ref>DOI 10.3390/pathogens7010020</ref>. Accordingly, they also differ in their properties. PrPC is soluble, has a life-span between 2 and 4 hours, and is sensitive to proteolytic cleavage – when exposed to proteases, the protein is degraded completely <ref name="pan" />. The two most important cleavage events are the α cleavage which removes the unstructured N-terminal tail and leaves the globular domain attached to the cell membrane, and the cleavage on the C-terminal end (termed PrPC shedding) which releases PrPC into the extracellular space <ref name="sig" />. Under the same conditions, PrPSc is hydrolysed by proteases only partially by forming resistant core fragment PrP 27-30 <ref name="pan" />. In addition, it is insoluble in detergents and has a very long half-life, therefore accumulates in tissues easily. It has a tendency to form aggregates and fibrillar structures and is generally susceptible to oligomerization, whereas the PrPC form mainly exist as a monomer <ref name="cohen">DOI 10.1146/annurev.biochem.67.1.793</ref>. Monomeric PrPSc has never been isolated. However, <scene name='81/814798/4e1i/1'>the structure of prion protein fragment</scene> representing a motif that can propagate oligomerization has been acquired <ref>10.2210/pdb4E1I/pdb</ref>.
== Misfolding ==
== Misfolding ==

Revision as of 17:22, 28 April 2019

Prions

Human prion protein

Drag the structure with the mouse to rotate

References

  1. Imran M, Mahmood S. An overview of animal prion diseases. Virol J. 2011 Nov 1;8:493. doi: 10.1186/1743-422X-8-493. PMID:22044871 doi:http://dx.doi.org/10.1186/1743-422X-8-493
  2. Prusiner SB. Prion diseases and the BSE crisis. Science. 1997 Oct 10;278(5336):245-51. doi: 10.1126/science.278.5336.245. PMID:9323196 doi:http://dx.doi.org/10.1126/science.278.5336.245
  3. 3.0 3.1 3.2 3.3 Sigurdson CJ, Bartz JC, Glatzel M. Cellular and Molecular Mechanisms of Prion Disease. Annu Rev Pathol. 2019 Jan 24;14:497-516. doi:, 10.1146/annurev-pathmechdis-012418-013109. Epub 2018 Oct 24. PMID:30355150 doi:http://dx.doi.org/10.1146/annurev-pathmechdis-012418-013109
  4. Riek R, Hornemann S, Wider G, Billeter M, Glockshuber R, Wuthrich K. NMR structure of the mouse prion protein domain PrP(121-321). Nature. 1996 Jul 11;382(6587):180-2. PMID:8700211 doi:10.1038/382180a0
  5. doi: https://dx.doi.org/10.1073/pnas.97.1.145
  6. Chesebro B, Trifilo M, Race R, Meade-White K, Teng C, LaCasse R, Raymond L, Favara C, Baron G, Priola S, Caughey B, Masliah E, Oldstone M. Anchorless prion protein results in infectious amyloid disease without clinical scrapie. Science. 2005 Jun 3;308(5727):1435-9. doi: 10.1126/science.1110837. PMID:15933194 doi:http://dx.doi.org/10.1126/science.1110837
  7. 7.0 7.1 7.2 7.3 Pan KM, Baldwin M, Nguyen J, Gasset M, Serban A, Groth D, Mehlhorn I, Huang Z, Fletterick RJ, Cohen FE, et al.. Conversion of alpha-helices into beta-sheets features in the formation of the scrapie prion proteins. Proc Natl Acad Sci U S A. 1993 Dec 1;90(23):10962-6. PMID:7902575
  8. Wille H, Requena JR. The Structure of PrP(Sc) Prions. Pathogens. 2018 Feb 7;7(1). pii: pathogens7010020. doi: 10.3390/pathogens7010020. PMID:29414853 doi:http://dx.doi.org/10.3390/pathogens7010020
  9. 9.0 9.1 9.2 9.3 Cohen FE, Prusiner SB. Pathologic conformations of prion proteins. Annu Rev Biochem. 1998;67:793-819. doi: 10.1146/annurev.biochem.67.1.793. PMID:9759504 doi:http://dx.doi.org/10.1146/annurev.biochem.67.1.793
  10. 10.2210/pdb4E1I/pdb
  11. 11.0 11.1 11.2 doi: https://dx.doi.org/10.1126/science.7909169
  12. Deleault NR, Lucassen RW, Supattapone S. RNA molecules stimulate prion protein conversion. Nature. 2003 Oct 16;425(6959):717-20. doi: 10.1038/nature01979. PMID:14562104 doi:http://dx.doi.org/10.1038/nature01979
  13. 13.0 13.1 Khanam H, Ali A, Asif M, Shamsuzzaman. Neurodegenerative diseases linked to misfolded proteins and their therapeutic approaches: A review. Eur J Med Chem. 2016 Nov 29;124:1121-1141. doi: 10.1016/j.ejmech.2016.08.006., Epub 2016 Aug 6. PMID:27597727 doi:http://dx.doi.org/10.1016/j.ejmech.2016.08.006
  14. Aucouturier P, Carp RI, Carnaud C, Wisniewski T. Prion diseases and the immune system. Clin Immunol. 2000 Aug;96(2):79-85. doi: 10.1006/clim.2000.4875. PMID:10900153 doi:http://dx.doi.org/10.1006/clim.2000.4875
  15. Casalone C, Hope J. Atypical and classic bovine spongiform encephalopathy. Handb Clin Neurol. 2018;153:121-134. doi: 10.1016/B978-0-444-63945-5.00007-6. PMID:29887132 doi:http://dx.doi.org/10.1016/B978-0-444-63945-5.00007-6
  16. Konold T, Bone G, Ryder S, Hawkins SA, Courtin F, Berthelin-Baker C. Clinical findings in 78 suspected cases of bovine spongiform encephalopathy in Great Britain. Vet Rec. 2004 Nov 20;155(21):659-66. PMID:15581140
  17. doi: https://dx.doi.org/10.1111/j.1749-6632.1994.tb38911.x
  18. Espinosa JC, Morales M, Castilla J, Rogers M, Torres JM. Progression of prion infectivity in asymptomatic cattle after oral bovine spongiform encephalopathy challenge. J Gen Virol. 2007 Apr;88(Pt 4):1379-83. doi: 10.1099/vir.0.82647-0. PMID:17374785 doi:http://dx.doi.org/10.1099/vir.0.82647-0
  19. 19.0 19.1 Knight R. Infectious and Sporadic Prion Diseases. Prog Mol Biol Transl Sci. 2017;150:293-318. doi: 10.1016/bs.pmbts.2017.06.010., Epub 2017 Aug 14. PMID:28838665 doi:http://dx.doi.org/10.1016/bs.pmbts.2017.06.010
  20. Mackenzie G, Will R. Creutzfeldt-Jakob disease: recent developments. F1000Res. 2017 Nov 27;6:2053. doi: 10.12688/f1000research.12681.1. eCollection, 2017. PMID:29225787 doi:http://dx.doi.org/10.12688/f1000research.12681.1
  21. Ladogana A, Puopolo M, Croes EA, Budka H, Jarius C, Collins S, Klug GM, Sutcliffe T, Giulivi A, Alperovitch A, Delasnerie-Laupretre N, Brandel JP, Poser S, Kretzschmar H, Rietveld I, Mitrova E, Cuesta Jde P, Martinez-Martin P, Glatzel M, Aguzzi A, Knight R, Ward H, Pocchiari M, van Duijn CM, Will RG, Zerr I. Mortality from Creutzfeldt-Jakob disease and related disorders in Europe, Australia, and Canada. Neurology. 2005 May 10;64(9):1586-91. doi: 10.1212/01.WNL.0000160117.56690.B2. PMID:15883321 doi:http://dx.doi.org/10.1212/01.WNL.0000160117.56690.B2
  22. Neumann DA. Letter: Hepatitis with hindsight. N Engl J Med. 1974 Mar 21;290(12):692. doi: 10.1056/NEJM197403212901220. PMID:4591848 doi:http://dx.doi.org/10.1056/NEJM197403212901220
  23. Maddox RA, Belay ED, Curns AT, Zou WQ, Nowicki S, Lembach RG, Geschwind MD, Haman A, Shinozaki N, Nakamura Y, Borer MJ, Schonberger LB. Creutzfeldt-Jakob disease in recipients of corneal transplants. Cornea. 2008 Aug;27(7):851-4. doi: 10.1097/ICO.0b013e31816a628d. PMID:18650677 doi:http://dx.doi.org/10.1097/ICO.0b013e31816a628d
  24. Peden AH, Ritchie DL, Uddin HP, Dean AF, Schiller KA, Head MW, Ironside JW. Abnormal prion protein in the pituitary in sporadic and variant Creutzfeldt-Jakob disease. J Gen Virol. 2007 Mar;88(Pt 3):1068-72. doi: 10.1099/vir.0.81913-0. PMID:17325383 doi:http://dx.doi.org/10.1099/vir.0.81913-0
  25. Cochius JI, Hyman N, Esiri MM. Creutzfeldt-Jakob disease in a recipient of human pituitary-derived gonadotrophin: a second case. J Neurol Neurosurg Psychiatry. 1992 Nov;55(11):1094-5. PMID:1469410
  26. Rudge P, Jaunmuktane Z, Adlard P, Bjurstrom N, Caine D, Lowe J, Norsworthy P, Hummerich H, Druyeh R, Wadsworth JD, Brandner S, Hyare H, Mead S, Collinge J. Iatrogenic CJD due to pituitary-derived growth hormone with genetically determined incubation times of up to 40 years. Brain. 2015 Nov;138(Pt 11):3386-99. doi: 10.1093/brain/awv235. Epub 2015 Aug 11. PMID:26268531 doi:http://dx.doi.org/10.1093/brain/awv235

Proteopedia Page Contributors and Editors (what is this?)

Eliška Koutná

Personal tools