Dystrophin
From Proteopedia
(Difference between revisions)
												
			
			| Line 11: | Line 11: | ||
Several studies show that dystrophin may also play a role in the stability, stiffness and organization of the sarcolemma, as well as protecting it from membrane stress suffered during muscle contraction. These cellular roles spawned it’s perceived function as a key mechanical scaffold of muscle cells; this role includes bulwarking against micro-tears and damages brought on by various forces including normal muscle contraction, as well as preventing non-specific ion (including calcium) and cellular content leakages <ref name="Second" />. Additionally, ZZ modules in the cysteine-rich domain of dystrophin have been hypothesized to contain calmodulin-binding domains, allowing regulation of the interactions with the other DAG complex elements directly with the use of calcium ions; current hypothesis involve conjecture that the DAP complex is involved with cellular signaling. The complex is hypothesized to anchor cellular signaling agents to the overall site. <ref name="Second" /> Disruption of the DAGC possibly leads to not only the leakage of cellular contents or leakage of ions, but more critically the activation of calcium-dependent proteases (as well as overall disruption of calcium homeostasis), generating the progressive cellular necrosis seen in the pathology of Duchenne’s Muscular Dystrophy.   | Several studies show that dystrophin may also play a role in the stability, stiffness and organization of the sarcolemma, as well as protecting it from membrane stress suffered during muscle contraction. These cellular roles spawned it’s perceived function as a key mechanical scaffold of muscle cells; this role includes bulwarking against micro-tears and damages brought on by various forces including normal muscle contraction, as well as preventing non-specific ion (including calcium) and cellular content leakages <ref name="Second" />. Additionally, ZZ modules in the cysteine-rich domain of dystrophin have been hypothesized to contain calmodulin-binding domains, allowing regulation of the interactions with the other DAG complex elements directly with the use of calcium ions; current hypothesis involve conjecture that the DAP complex is involved with cellular signaling. The complex is hypothesized to anchor cellular signaling agents to the overall site. <ref name="Second" /> Disruption of the DAGC possibly leads to not only the leakage of cellular contents or leakage of ions, but more critically the activation of calcium-dependent proteases (as well as overall disruption of calcium homeostasis), generating the progressive cellular necrosis seen in the pathology of Duchenne’s Muscular Dystrophy.   | ||
| - | Dystrophin comprises 4 major domains. The crystal structure of the dystrophin actin-binding domain (ABD) has been determined at 2.6 A resolution. The structure is an antiparallel dimer of two ABDs each comprising two calponin homology domains (CH1 and CH2) that are linked by a central alpha helix located at the amino terminal. The CH domains are both alpha-helical globular folds <ref name="Fourth">. The calponin homology (CH) domain is a protein module of about 100 residues that was first identified at the N-terminus of calponin, an actin-binding protein playing a major regulatory role in muscle contraction. The second and largest domain is composed of 24 triple helical spectrin-like repeats thought to majorly contribute dystrophin’s overall shape that resembles a stretched out and flexible rod. The third domain is cysteine-rich and encodes two EF hand-like modules bounded by WW (a module known to mediate regulatory protein complexes) and ZZ (a zinc-finger and cysteine rich domain near the C-terminus involved in stabilizing the interaction between dystrophin and β-dystroglycan) modules <ref name="Fourth"> [5]. The fourth domain, the carboxy terminus is unique to dystrophin and contains two regions forming α-helical coiled coils forming the binding site for dystrobrevin   | + | Dystrophin comprises 4 major domains. The crystal structure of the dystrophin actin-binding domain (ABD) has been determined at 2.6 A resolution. The structure is an antiparallel dimer of two ABDs each comprising two calponin homology domains (CH1 and CH2) that are linked by a central alpha helix located at the amino terminal. The CH domains are both alpha-helical globular folds <ref name="Fourth">. The calponin homology (CH) domain is a protein module of about 100 residues that was first identified at the N-terminus of calponin, an actin-binding protein playing a major regulatory role in muscle contraction. The second and largest domain is composed of 24 triple helical spectrin-like repeats thought to majorly contribute dystrophin’s overall shape that resembles a stretched out and flexible rod. The third domain is cysteine-rich and encodes two EF hand-like modules bounded by WW (a module known to mediate regulatory protein complexes) and ZZ (a zinc-finger and cysteine rich domain near the C-terminus involved in stabilizing the interaction between dystrophin and β-dystroglycan) modules <ref name="Fourth"> [5]. The fourth domain, the carboxy terminus is unique to dystrophin and contains two regions forming α-helical coiled coils forming the binding site for dystrobrevin  | 
Revision as of 18:06, 4 May 2019
  | |||||||||||
References
- ↑ 1.0 1.1 (García-Pelagio KP, Bloch RJ, Ortega A, González-Serratos H (March 2011) "Biomechanics of the sarcolemma and costameres in single skeletal muscle fibers from normal and dystrophin-null mice".) www.ncbi.nlm.nih.gov./pmc/articles/PMC4326082/
 - ↑ 2.0 2.1 2.2 “Dystrophin, Its Interactions with Other Proteins, and Implications for Muscular Dystrophy.” Biochimica Et Biophysica Acta (BBA) - Molecular Basis of Disease, Elsevier, 7 June 2006, www.sciencedirect.com/science/article/pii/S0925443906001037.
 - ↑ 3.0 3.1 3.2 “Dystrophin Complex Functions as a Scaffold for Signalling Proteins.” Biochimica Et Biophysica Acta (BBA) - Biomembranes, Elsevier, 7 Sept. 2013, www.sciencedirect.com/science/article/pii/S0005273613003027?via%3Dihub.
 
