1aoi

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 3: Line 3:
<StructureSection load='1aoi' size='340' side='right'caption='[[1aoi]], [[Resolution|resolution]] 2.80&Aring;' scene=''>
<StructureSection load='1aoi' size='340' side='right'caption='[[1aoi]], [[Resolution|resolution]] 2.80&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[1aoi]] is a 10 chain structure. The July 2000 RCSB PDB [http://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Nucleosome'' by David S. Goodsell is [http://dx.doi.org/10.2210/rcsb_pdb/mom_2000_7 10.2210/rcsb_pdb/mom_2000_7]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1AOI OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1AOI FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[1aoi]] is a 10 chain structure. The July 2000 RCSB PDB [https://pdb.rcsb.org/pdb/static.do?p=education_discussion/molecule_of_the_month/index.html Molecule of the Month] feature on ''Nucleosome'' by David S. Goodsell is [https://dx.doi.org/10.2210/rcsb_pdb/mom_2000_7 10.2210/rcsb_pdb/mom_2000_7]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1AOI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1AOI FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr>
+
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=MN:MANGANESE+(II)+ION'>MN</scene></td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1aoi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1aoi OCA], [http://pdbe.org/1aoi PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1aoi RCSB], [http://www.ebi.ac.uk/pdbsum/1aoi PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1aoi ProSAT]</span></td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1aoi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1aoi OCA], [https://pdbe.org/1aoi PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1aoi RCSB], [https://www.ebi.ac.uk/pdbsum/1aoi PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1aoi ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/H2A1_XENLA H2A1_XENLA]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [[http://www.uniprot.org/uniprot/H4_XENLA H4_XENLA]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [[http://www.uniprot.org/uniprot/H32_XENLA H32_XENLA]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [[http://www.uniprot.org/uniprot/H2B11_XENLA H2B11_XENLA]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
+
[[https://www.uniprot.org/uniprot/H2A1_XENLA H2A1_XENLA]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [[https://www.uniprot.org/uniprot/H4_XENLA H4_XENLA]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [[https://www.uniprot.org/uniprot/H32_XENLA H32_XENLA]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [[https://www.uniprot.org/uniprot/H2B11_XENLA H2B11_XENLA]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
== Evolutionary Conservation ==
== Evolutionary Conservation ==
[[Image:Consurf_key_small.gif|200px|right]]
[[Image:Consurf_key_small.gif|200px|right]]
Line 30: Line 30:
==See Also==
==See Also==
-
*[[Histone|Histone]]
+
*[[Histone 3D structures|Histone 3D structures]]
-
*[[Nucleosome structure|Nucleosome structure]]
+
-
*[[Nucleosome structure (Spanish)|Nucleosome structure (Spanish)]]
+
-
*[[Nucleosomes|Nucleosomes]]
+
-
*[[User:Eric Martz/Nucleosomes|User:Eric Martz/Nucleosomes]]
+
-
*[[User:Luca Toldo|User:Luca Toldo]]
+
== References ==
== References ==
<references/>
<references/>

Revision as of 10:22, 17 February 2021

COMPLEX BETWEEN NUCLEOSOME CORE PARTICLE (H3,H4,H2A,H2B) AND 146 BP LONG DNA FRAGMENT

PDB ID 1aoi

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools