4w63
From Proteopedia
(Difference between revisions)
Line 10: | Line 10: | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/ACES_TORCA ACES_TORCA]] Terminates signal transduction at the neuromuscular junction by rapid hydrolysis of the acetylcholine released into the synaptic cleft. May be involved in cell-cell interactions. | [[http://www.uniprot.org/uniprot/ACES_TORCA ACES_TORCA]] Terminates signal transduction at the neuromuscular junction by rapid hydrolysis of the acetylcholine released into the synaptic cleft. May be involved in cell-cell interactions. | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Twenty-six new tacrine-benzofuran hybrids were designed, synthesized, and evaluated in vitro on key molecular targets for Alzheimer's disease. Most hybrids exhibited good inhibitory activities on cholinesterases and beta-amyloid self-aggregation. Selected compounds displayed significant inhibition of human beta-secretase-1 (hBACE-1). Among the 26 hybrids, 2e showed the most interesting profile as a subnanomolar selective inhibitor of human acetylcholinesterase (hAChE) (IC50 = 0.86 nM) and a good inhibitor of both beta-amyloid aggregation (hAChE- and self-induced, 61.3% and 58.4%, respectively) and hBACE-1 activity (IC50 = 1.35 muM). Kinetic studies showed that 2e acted as a slow, tight-binding, mixed-type inhibitor, while X-ray crystallographic studies highlighted the ability of 2e to induce large-scale structural changes in the active-site gorge of Torpedo californica AChE (TcAChE), with significant implications for structure-based drug design. In vivo studies confirmed that 2e significantly ameliorates performances of scopolamine-treated ICR mice. Finally, 2e administration did not exhibit significant hepatotoxicity. | ||
+ | |||
+ | Novel Tacrine-Benzofuran Hybrids as Potent Multitarget-Directed Ligands for the Treatment of Alzheimer's Disease: Design, Synthesis, Biological Evaluation, and X-ray Crystallography.,Zha X, Lamba D, Zhang L, Lou Y, Xu C, Kang D, Chen L, Xu Y, Zhang L, De Simone A, Samez S, Pesaresi A, Stojan J, Lopez MG, Egea J, Andrisano V, Bartolini M J Med Chem. 2016 Jan 14;59(1):114-31. doi: 10.1021/acs.jmedchem.5b01119. Epub, 2015 Dec 29. PMID:26632651<ref>PMID:26632651</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 4w63" style="background-color:#fffaf0;"></div> | ||
==See Also== | ==See Also== | ||
*[[Acetylcholinesterase 3D structures|Acetylcholinesterase 3D structures]] | *[[Acetylcholinesterase 3D structures|Acetylcholinesterase 3D structures]] | ||
+ | == References == | ||
+ | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> |
Revision as of 06:20, 21 August 2019
TORPEDO CALIFORNICA ACETYLCHOLINESTERASE IN COMPLEX WITH A TACRINE-BENZOFURAN HYBRID INHIBITOR
|