6nus
From Proteopedia
(Difference between revisions)
Line 9: | Line 9: | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/R1AB_CVHSA R1AB_CVHSA]] The replicase polyprotein of coronaviruses is a multifunctional protein: it contains the activities necessary for the transcription of negative stranded RNA, leader RNA, subgenomic mRNAs and progeny virion RNA as well as proteinases responsible for the cleavage of the polyprotein into functional products (By similarity).<ref>PMID:17024178</ref> <ref>PMID:17692280</ref> <ref>PMID:19369340</ref> The papain-like proteinase (PL-PRO) is responsible for the cleavages located at the N-terminus of replicase polyprotein. In addition, PL-PRO possesses a deubiquitinating/deISGylating activity and processes both 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains from cellular substrates. Antagonizes innate immune induction of type I interferon by blocking the phosphorylation, dimerization and subsequent nuclear translocation of host IRF-3.<ref>PMID:17024178</ref> <ref>PMID:17692280</ref> <ref>PMID:19369340</ref> The main proteinase 3CL-PRO is responsible for the majority of cleavages as it cleaves the C-terminus of replicase polyprotein at 11 sites. Recognizes substrates containing the core sequence [ILMVF]-Q-|-[SGACN]. Inhibited by the substrate-analog Cbz-Val-Asn-Ser-Thr-Leu-Gln-CMK (By similarity). Also contains an ADP-ribose-1''-phosphate (ADRP)-binding function.<ref>PMID:17024178</ref> <ref>PMID:17692280</ref> <ref>PMID:19369340</ref> The helicase which contains a zinc finger structure displays RNA and DNA duplex-unwinding activities with 5' to 3' polarity. Its ATPase activity is strongly stimulated by poly(U), poly(dT), poly(C), poly(dA), but not by poly(G). Activity of helicase is dependent on magnesium.<ref>PMID:17024178</ref> <ref>PMID:17692280</ref> <ref>PMID:19369340</ref> The exoribonuclease acts on both ssRNA and dsRNA in a 3' to 5' direction.<ref>PMID:17024178</ref> <ref>PMID:17692280</ref> <ref>PMID:19369340</ref> Nsp7-nsp8 hexadecamer may possibly confer processivity to the polymerase, maybe by binding to dsRNA or by producing primers utilized by the latter.<ref>PMID:17024178</ref> <ref>PMID:17692280</ref> <ref>PMID:19369340</ref> Nsp9 is a ssRNA-binding protein.<ref>PMID:17024178</ref> <ref>PMID:17692280</ref> <ref>PMID:19369340</ref> NendoU is a Mn(2+)-dependent, uridylate-specific enzyme, which leaves 2'-3'-cyclic phosphates 5' to the cleaved bond.<ref>PMID:17024178</ref> <ref>PMID:17692280</ref> <ref>PMID:19369340</ref> [[http://www.uniprot.org/uniprot/R1A_CVHSA R1A_CVHSA]] The papain-like proteinase (PL-PRO) is responsible for the cleavages located at the N-terminus of replicase polyprotein. In addition, PL-PRO possesses a deubiquitinating/deISGylating activity and processes both 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains from cellular substrates. Antagonizes innate immune induction of type I interferon by blocking the phosphorylation, dimerization and subsequent nuclear translocation of host IRF-3.<ref>PMID:17024178</ref> <ref>PMID:17692280</ref> <ref>PMID:19369340</ref> The main proteinase 3CL-PRO is responsible for the majority of cleavages as it cleaves the C-terminus of replicase polyprotein at 11 sites. Recognizes substrates containing the core sequence [ILMVF]-Q-|-[SGACN]. Inhibited by the substrate-analog Cbz-Val-Asn-Ser-Thr-Leu-Gln-CMK (By similarity). Also contains an ADP-ribose-1''-phosphate (ADRP)-binding function.<ref>PMID:17024178</ref> <ref>PMID:17692280</ref> <ref>PMID:19369340</ref> Nsp7-nsp8 hexadecamer may possibly confer processivity to the polymerase, maybe by binding to dsRNA or by producing primers utilized by the latter.<ref>PMID:17024178</ref> <ref>PMID:17692280</ref> <ref>PMID:19369340</ref> Nsp9 is a ssRNA-binding protein.<ref>PMID:17024178</ref> <ref>PMID:17692280</ref> <ref>PMID:19369340</ref> | [[http://www.uniprot.org/uniprot/R1AB_CVHSA R1AB_CVHSA]] The replicase polyprotein of coronaviruses is a multifunctional protein: it contains the activities necessary for the transcription of negative stranded RNA, leader RNA, subgenomic mRNAs and progeny virion RNA as well as proteinases responsible for the cleavage of the polyprotein into functional products (By similarity).<ref>PMID:17024178</ref> <ref>PMID:17692280</ref> <ref>PMID:19369340</ref> The papain-like proteinase (PL-PRO) is responsible for the cleavages located at the N-terminus of replicase polyprotein. In addition, PL-PRO possesses a deubiquitinating/deISGylating activity and processes both 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains from cellular substrates. Antagonizes innate immune induction of type I interferon by blocking the phosphorylation, dimerization and subsequent nuclear translocation of host IRF-3.<ref>PMID:17024178</ref> <ref>PMID:17692280</ref> <ref>PMID:19369340</ref> The main proteinase 3CL-PRO is responsible for the majority of cleavages as it cleaves the C-terminus of replicase polyprotein at 11 sites. Recognizes substrates containing the core sequence [ILMVF]-Q-|-[SGACN]. Inhibited by the substrate-analog Cbz-Val-Asn-Ser-Thr-Leu-Gln-CMK (By similarity). Also contains an ADP-ribose-1''-phosphate (ADRP)-binding function.<ref>PMID:17024178</ref> <ref>PMID:17692280</ref> <ref>PMID:19369340</ref> The helicase which contains a zinc finger structure displays RNA and DNA duplex-unwinding activities with 5' to 3' polarity. Its ATPase activity is strongly stimulated by poly(U), poly(dT), poly(C), poly(dA), but not by poly(G). Activity of helicase is dependent on magnesium.<ref>PMID:17024178</ref> <ref>PMID:17692280</ref> <ref>PMID:19369340</ref> The exoribonuclease acts on both ssRNA and dsRNA in a 3' to 5' direction.<ref>PMID:17024178</ref> <ref>PMID:17692280</ref> <ref>PMID:19369340</ref> Nsp7-nsp8 hexadecamer may possibly confer processivity to the polymerase, maybe by binding to dsRNA or by producing primers utilized by the latter.<ref>PMID:17024178</ref> <ref>PMID:17692280</ref> <ref>PMID:19369340</ref> Nsp9 is a ssRNA-binding protein.<ref>PMID:17024178</ref> <ref>PMID:17692280</ref> <ref>PMID:19369340</ref> NendoU is a Mn(2+)-dependent, uridylate-specific enzyme, which leaves 2'-3'-cyclic phosphates 5' to the cleaved bond.<ref>PMID:17024178</ref> <ref>PMID:17692280</ref> <ref>PMID:19369340</ref> [[http://www.uniprot.org/uniprot/R1A_CVHSA R1A_CVHSA]] The papain-like proteinase (PL-PRO) is responsible for the cleavages located at the N-terminus of replicase polyprotein. In addition, PL-PRO possesses a deubiquitinating/deISGylating activity and processes both 'Lys-48'- and 'Lys-63'-linked polyubiquitin chains from cellular substrates. Antagonizes innate immune induction of type I interferon by blocking the phosphorylation, dimerization and subsequent nuclear translocation of host IRF-3.<ref>PMID:17024178</ref> <ref>PMID:17692280</ref> <ref>PMID:19369340</ref> The main proteinase 3CL-PRO is responsible for the majority of cleavages as it cleaves the C-terminus of replicase polyprotein at 11 sites. Recognizes substrates containing the core sequence [ILMVF]-Q-|-[SGACN]. Inhibited by the substrate-analog Cbz-Val-Asn-Ser-Thr-Leu-Gln-CMK (By similarity). Also contains an ADP-ribose-1''-phosphate (ADRP)-binding function.<ref>PMID:17024178</ref> <ref>PMID:17692280</ref> <ref>PMID:19369340</ref> Nsp7-nsp8 hexadecamer may possibly confer processivity to the polymerase, maybe by binding to dsRNA or by producing primers utilized by the latter.<ref>PMID:17024178</ref> <ref>PMID:17692280</ref> <ref>PMID:19369340</ref> Nsp9 is a ssRNA-binding protein.<ref>PMID:17024178</ref> <ref>PMID:17692280</ref> <ref>PMID:19369340</ref> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Recent history is punctuated by the emergence of highly pathogenic coronaviruses such as SARS- and MERS-CoV into human circulation. Upon infecting host cells, coronaviruses assemble a multi-subunit RNA-synthesis complex of viral non-structural proteins (nsp) responsible for the replication and transcription of the viral genome. Here, we present the 3.1 A resolution structure of the SARS-CoV nsp12 polymerase bound to its essential co-factors, nsp7 and nsp8, using single particle cryo-electron microscopy. nsp12 possesses an architecture common to all viral polymerases as well as a large N-terminal extension containing a kinase-like fold and is bound by two nsp8 co-factors. This structure illuminates the assembly of the coronavirus core RNA-synthesis machinery, provides key insights into nsp12 polymerase catalysis and fidelity and acts as a template for the design of novel antiviral therapeutics. | ||
+ | |||
+ | Structure of the SARS-CoV nsp12 polymerase bound to nsp7 and nsp8 co-factors.,Kirchdoerfer RN, Ward AB Nat Commun. 2019 May 28;10(1):2342. doi: 10.1038/s41467-019-10280-3. PMID:31138817<ref>PMID:31138817</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 6nus" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> |
Revision as of 06:18, 12 June 2019
SARS-Coronavirus NSP12 bound to NSP8 co-factor
|