|
|
Line 3: |
Line 3: |
| <StructureSection load='6jgi' size='340' side='right'caption='[[6jgi]], [[Resolution|resolution]] 0.85Å' scene=''> | | <StructureSection load='6jgi' size='340' side='right'caption='[[6jgi]], [[Resolution|resolution]] 0.85Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[6jgi]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Aeqvi Aeqvi]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6JGI OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6JGI FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6jgi]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Aequorea_victoria Aequorea victoria]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6JGI OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=6JGI FirstGlance]. <br> |
- | </td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=CRO:{2-[(1R,2R)-1-AMINO-2-HYDROXYPROPYL]-4-(4-HYDROXYBENZYLIDENE)-5-OXO-4,5-DIHYDRO-1H-IMIDAZOL-1-YL}ACETIC+ACID'>CRO</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 0.85Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">GFP ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=6100 AEQVI])</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CRO:{2-[(1R,2R)-1-AMINO-2-HYDROXYPROPYL]-4-(4-HYDROXYBENZYLIDENE)-5-OXO-4,5-DIHYDRO-1H-IMIDAZOL-1-YL}ACETIC+ACID'>CRO</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6jgi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6jgi OCA], [http://pdbe.org/6jgi PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6jgi RCSB], [http://www.ebi.ac.uk/pdbsum/6jgi PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6jgi ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=6jgi FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6jgi OCA], [https://pdbe.org/6jgi PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=6jgi RCSB], [https://www.ebi.ac.uk/pdbsum/6jgi PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=6jgi ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/GFP_AEQVI GFP_AEQVI]] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin. | + | [https://www.uniprot.org/uniprot/GFP_AEQVI GFP_AEQVI] Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 19: |
Line 19: |
| </div> | | </div> |
| <div class="pdbe-citations 6jgi" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 6jgi" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Green Fluorescent Protein 3D structures|Green Fluorescent Protein 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Aeqvi]] | + | [[Category: Aequorea victoria]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Hanazono, Y]] | + | [[Category: Hanazono Y]] |
- | [[Category: Miki, K]] | + | [[Category: Miki K]] |
- | [[Category: Tai, Y]] | + | [[Category: Tai Y]] |
- | [[Category: Takaba, K]] | + | [[Category: Takaba K]] |
- | [[Category: Takeda, K]] | + | [[Category: Takeda K]] |
- | [[Category: Fluorescent protein]]
| + | |
- | [[Category: Green fluorescent protein]]
| + | |
- | [[Category: Hydrogen]]
| + | |
| Structural highlights
Function
GFP_AEQVI Energy-transfer acceptor. Its role is to transduce the blue chemiluminescence of the protein aequorin into green fluorescent light by energy transfer. Fluoresces in vivo upon receiving energy from the Ca(2+)-activated photoprotein aequorin.
Publication Abstract from PubMed
Green fluorescent protein (GFP) is a light-emitting protein that does not require a prosthetic group for its fluorescent activity. As such, GFP has become indispensable as a molecular tool in molecular biology. Nonetheless, there has been no subatomic elucidation of the GFP structure owing to the structural polymorphism around the chromophore. Here, subatomic resolution X-ray structures of GFP without the structural polymorphism are reported. The positions of H atoms, hydrogen-bonding network patterns and accurate geometric parameters were determined for the two protonated forms. Compared with previously determined crystal structures and theoretically optimized structures, the anionic chromophores of the structures represent the authentic resonance state of GFP. In addition, charge-density analysis based on atoms-in-molecules theory and noncovalent interaction analysis highlight weak but substantial interactions between the chromophore and the protein environment. Considered with the derived chemical indicators, the lone pair-pi interactions between the chromophore and Thr62 should play a sufficient role in maintaining the electronic state of the chromophore. These results not only reveal the fine structural features that are critical to understanding the properties of GFP, but also highlight the limitations of current quantum-chemical calculations.
Subatomic resolution X-ray structures of green fluorescent protein.,Takaba K, Tai Y, Eki H, Dao HA, Hanazono Y, Hasegawa K, Miki K, Takeda K IUCrJ. 2019 Apr 3;6(Pt 3):387-400. doi: 10.1107/S205225251900246X. eCollection, 2019 May 1. PMID:31098020[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Takaba K, Tai Y, Eki H, Dao HA, Hanazono Y, Hasegawa K, Miki K, Takeda K. Subatomic resolution X-ray structures of green fluorescent protein. IUCrJ. 2019 Apr 3;6(Pt 3):387-400. doi: 10.1107/S205225251900246X. eCollection, 2019 May 1. PMID:31098020 doi:http://dx.doi.org/10.1107/S205225251900246X
|