|
|
Line 3: |
Line 3: |
| <StructureSection load='4xkt' size='340' side='right'caption='[[4xkt]], [[Resolution|resolution]] 1.82Å' scene=''> | | <StructureSection load='4xkt' size='340' side='right'caption='[[4xkt]], [[Resolution|resolution]] 1.82Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4xkt]] is a 12 chain structure with sequence from [http://en.wikipedia.org/wiki/"bacillus_coli"_migula_1895 "bacillus coli" migula 1895]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4XKT OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4XKT FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4xkt]] is a 12 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_coli Escherichia coli]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4XKT OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4XKT FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">bfr, BN1008_2995, BN17_32701, BU34_11470, BU65_02845, BU66_00425, BU67_22375, BU68_21080, BU69_14600, CF57_02675, CF61_03435, DO98_13405, DP79_03550, ECHMS174_03989, ECRV308_03369, EH62_04010, EH63_09485, EH64_04335, EH65_17065, EH66_25435, EL75_0360, EL77_0399, EL78_0411, EL79_0379, EL80_0371, EP08_09090, GR02_14320, GR05_21335, GR06_21735, KV39_17170, LF82_0224, PGD_00550 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=562 "Bacillus coli" Migula 1895])</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4xkt FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4xkt OCA], [https://pdbe.org/4xkt PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4xkt RCSB], [https://www.ebi.ac.uk/pdbsum/4xkt PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4xkt ProSAT]</span></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Ferroxidase Ferroxidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.16.3.1 1.16.3.1] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4xkt FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4xkt OCA], [http://pdbe.org/4xkt PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4xkt RCSB], [http://www.ebi.ac.uk/pdbsum/4xkt PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4xkt ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/E2QFJ1_ECOLX E2QFJ1_ECOLX]] Iron-storage protein, whose ferroxidase center binds Fe(2+) ions, oxidizes them by dioxygen to Fe(3+), and participates in the subsequent Fe(3+) oxide mineral core formation within the central cavity of the protein complex.[PIRNR:PIRNR002560] | + | [https://www.uniprot.org/uniprot/BFR_ECOLI BFR_ECOLI] Iron-storage protein, whose ferroxidase center binds Fe(2+) ions, oxidizes them by dioxygen to Fe(3+), and participates in the subsequent Fe(3+) oxide mineral core formation within the central cavity of the protein complex. The mineralized iron core can contain as many as 2700 iron atoms/24-meric molecule.<ref>PMID:10769150</ref> <ref>PMID:14636073</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 20: |
Line 18: |
| </div> | | </div> |
| <div class="pdbe-citations 4xkt" style="background-color:#fffaf0;"></div> | | <div class="pdbe-citations 4xkt" style="background-color:#fffaf0;"></div> |
| + | |
| + | ==See Also== |
| + | *[[Ferritin 3D structures|Ferritin 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Bacillus coli migula 1895]] | + | [[Category: Escherichia coli]] |
- | [[Category: Ferroxidase]]
| + | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Bradley, J M]] | + | [[Category: Bradley JM]] |
- | [[Category: Brun, N E.Le]]
| + | [[Category: Hemmings AM]] |
- | [[Category: Hemmings, A M]] | + | [[Category: Le Brun NE]] |
- | [[Category: Diiron site]] | + | |
- | [[Category: Iron storage]]
| + | |
- | [[Category: Metal binding protein]]
| + | |
| Structural highlights
Function
BFR_ECOLI Iron-storage protein, whose ferroxidase center binds Fe(2+) ions, oxidizes them by dioxygen to Fe(3+), and participates in the subsequent Fe(3+) oxide mineral core formation within the central cavity of the protein complex. The mineralized iron core can contain as many as 2700 iron atoms/24-meric molecule.[1] [2]
Publication Abstract from PubMed
Ferritins are iron storage proteins that overcome the problems of toxicity and poor bioavailability of iron by catalyzing iron oxidation and mineralization through the activity of a diiron ferroxidase site. Unlike in other ferritins, the oxidized di-Fe3+ site of Escherichia coli bacterioferritin (EcBFR) is stable and therefore does not function as a conduit for the transfer of Fe3+ into the storage cavity, but instead acts as a true catalytic cofactor that cycles its oxidation state while driving Fe2+ oxidation in the cavity. Herein, we demonstrate that EcBFR mineralization depends on three aromatic residues near the diiron site, Tyr25, Tyr58, and Trp133, and that a transient radical is formed on Tyr25. The data indicate that the aromatic residues, together with a previously identified inner surface iron site, promote mineralization by ensuring the simultaneous delivery of two electrons, derived from Fe2+ oxidation in the BFR cavity, to the di-ferric catalytic site for safe reduction of O2 .
Three Aromatic Residues are Required for Electron Transfer during Iron Mineralization in Bacterioferritin.,Bradley JM, Svistunenko DA, Lawson TL, Hemmings AM, Moore GR, Le Brun NE Angew Chem Int Ed Engl. 2015 Oct 16. doi: 10.1002/anie.201507486. PMID:26474305[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Yang X, Le Brun NE, Thomson AJ, Moore GR, Chasteen ND. The iron oxidation and hydrolysis chemistry of Escherichia coli bacterioferritin. Biochemistry. 2000 Apr 25;39(16):4915-23. PMID:10769150
- ↑ Baaghil S, Lewin A, Moore GR, Le Brun NE. Core formation in Escherichia coli bacterioferritin requires a functional ferroxidase center. Biochemistry. 2003 Dec 2;42(47):14047-56. PMID:14636073 doi:http://dx.doi.org/10.1021/bi035253u
- ↑ Bradley JM, Svistunenko DA, Lawson TL, Hemmings AM, Moore GR, Le Brun NE. Three Aromatic Residues are Required for Electron Transfer during Iron Mineralization in Bacterioferritin. Angew Chem Int Ed Engl. 2015 Oct 16. doi: 10.1002/anie.201507486. PMID:26474305 doi:http://dx.doi.org/10.1002/anie.201507486
|