|
|
Line 3: |
Line 3: |
| <StructureSection load='4xdv' size='340' side='right'caption='[[4xdv]], [[Resolution|resolution]] 2.25Å' scene=''> | | <StructureSection load='4xdv' size='340' side='right'caption='[[4xdv]], [[Resolution|resolution]] 2.25Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4xdv]] is a 8 chain structure with sequence from [http://en.wikipedia.org/wiki/"mycobacterium_erythropolis"_gray_and_thornton_1928 "mycobacterium erythropolis" gray and thornton 1928]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4XDV OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4XDV FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4xdv]] is a 8 chain structure with sequence from [https://en.wikipedia.org/wiki/Rhodococcus_erythropolis Rhodococcus erythropolis]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4XDV OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4XDV FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=40O:(1R,2R)-CYCLOHEXANE-1,2-DIOL'>40O</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=40O:(1R,2R)-CYCLOHEXANE-1,2-DIOL'>40O</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4xbt|4xbt]], [[4xbx|4xbx]], [[4xby|4xby]], [[4xdw|4xdw]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4xdv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4xdv OCA], [https://pdbe.org/4xdv PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4xdv RCSB], [https://www.ebi.ac.uk/pdbsum/4xdv PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4xdv ProSAT]</span></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">limA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1833 "Mycobacterium erythropolis" Gray and Thornton 1928])</td></tr>
| + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Limonene-1,2-epoxide_hydrolase Limonene-1,2-epoxide hydrolase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.3.2.8 3.3.2.8] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4xdv FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4xdv OCA], [http://pdbe.org/4xdv PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4xdv RCSB], [http://www.ebi.ac.uk/pdbsum/4xdv PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4xdv ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/LIMA_RHOER LIMA_RHOER]] Catalyzes the conversion of limonene-1,2-epoxide to limonene-1,2-diol. Can use both the (-) and (+) isomers of limonene-1,2-epoxide as substrates and also has some activity with 1-methylcyclohexene oxide, cyclohexene oxide and indene oxide as substrates. | + | [https://www.uniprot.org/uniprot/LIMA_RHOER LIMA_RHOER] Catalyzes the conversion of limonene-1,2-epoxide to limonene-1,2-diol. Can use both the (-) and (+) isomers of limonene-1,2-epoxide as substrates and also has some activity with 1-methylcyclohexene oxide, cyclohexene oxide and indene oxide as substrates. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 23: |
Line 20: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Epoxide hydrolase|Epoxide hydrolase]] | + | *[[Epoxide hydrolase 3D structures|Epoxide hydrolase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Mycobacterium erythropolis gray and thornton 1928]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Limonene-1,2-epoxide hydrolase]] | + | [[Category: Rhodococcus erythropolis]] |
- | [[Category: Kong, X D]] | + | [[Category: Kong XD]] |
- | [[Category: Lonsdale, R]] | + | [[Category: Lonsdale R]] |
- | [[Category: Reetz, M T]] | + | [[Category: Reetz MT]] |
- | [[Category: Sun, Z]] | + | [[Category: Sun Z]] |
- | [[Category: Xu, J H]] | + | [[Category: Xu JH]] |
- | [[Category: Zhou, J]] | + | [[Category: Zhou J]] |
- | [[Category: Epoxide hydrolase]]
| + | |
- | [[Category: Hydrolase]]
| + | |
| Structural highlights
Function
LIMA_RHOER Catalyzes the conversion of limonene-1,2-epoxide to limonene-1,2-diol. Can use both the (-) and (+) isomers of limonene-1,2-epoxide as substrates and also has some activity with 1-methylcyclohexene oxide, cyclohexene oxide and indene oxide as substrates.
Publication Abstract from PubMed
Directed evolution based on saturation mutagenesis at sites lining the binding pocket is a commonly practiced strategy for enhancing or inverting the stereoselectivity of enzymes for use in organic chemistry or biotechnology. However, as the number of residues in a randomization site increases to five or more, the screening effort for 95 % library coverage increases astronomically until it is no longer feasible. We propose the use of a single amino acid for saturation mutagenesis at superlarge randomization sites comprising 10 or more residues. When used to reshape the binding pocket of limonene epoxide hydrolase, this strategy, which drastically reduces the search space and thus the screening effort, resulted in R,R- and S,S-selective mutants for the hydrolytic desymmetrization of cyclohexene oxide and other epoxides. X-ray crystal structures and docking studies of the mutants unveiled the source of stereoselectivity and shed light on the mechanistic intricacies of this enzyme.
Reshaping an Enzyme Binding Pocket for Enhanced and Inverted Stereoselectivity: Use of Smallest Amino Acid Alphabets in Directed Evolution.,Sun Z, Lonsdale R, Kong XD, Xu JH, Zhou J, Reetz MT Angew Chem Int Ed Engl. 2015 Apr 17. doi: 10.1002/anie.201501809. PMID:25891639[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Sun Z, Lonsdale R, Kong XD, Xu JH, Zhou J, Reetz MT. Reshaping an Enzyme Binding Pocket for Enhanced and Inverted Stereoselectivity: Use of Smallest Amino Acid Alphabets in Directed Evolution. Angew Chem Int Ed Engl. 2015 Apr 17. doi: 10.1002/anie.201501809. PMID:25891639 doi:http://dx.doi.org/10.1002/anie.201501809
|