LdtMt2
From Proteopedia
(Difference between revisions)
Line 1: | Line 1: | ||
==Overview== | ==Overview== | ||
- | <StructureSection load=' | + | <StructureSection load='5du7proteo .pdb' size='340' side='right' caption='LdtMt2' scene=''> |
+ | |||
The L,D-transpeptidase '''LdtMt2''' is an enzyme that catalyzes the formation of peptidoglycan crosslinking in ''Mycobaterium tuberculosis''. | The L,D-transpeptidase '''LdtMt2''' is an enzyme that catalyzes the formation of peptidoglycan crosslinking in ''Mycobaterium tuberculosis''. | ||
Formation of the most common type of crosslink in peptidoglycan, the (D,D) 4 -> 3 linkage, is catalyzed by the D,D-transpeptidase. These enzymes generate 4 -> 3 transpeptidase linkages between the fourth amino acid (D-alanine) of one chain and the third amino acid (meso-diaminopimelic acid) of an adjacent chain. A second type of crosslink, the (L,D) 3 -> 3 linkage is catalysed by L,D-transpeptidases such as Mtb L,D-transpeptidase LdtMt2 of ''Mycobaterium tuberculosis''. These enzymes transfer the peptide bond between the third residue (meso-diaminopimelic acid) of a tetrapeptide donor stem to the side-chain amide group of the third residue (meso-diaminopimelic acid) of an adjacent acceptor stem. In both types of transpeptidases, the catalysis proceeds by a two-step mechanism: acylation of the enzyme by the penultimate peptide of the donor stem with the release of the stem C-terminal residue, followed by deacylation of this acyl-enzyme intermediate by an acceptor stem. | Formation of the most common type of crosslink in peptidoglycan, the (D,D) 4 -> 3 linkage, is catalyzed by the D,D-transpeptidase. These enzymes generate 4 -> 3 transpeptidase linkages between the fourth amino acid (D-alanine) of one chain and the third amino acid (meso-diaminopimelic acid) of an adjacent chain. A second type of crosslink, the (L,D) 3 -> 3 linkage is catalysed by L,D-transpeptidases such as Mtb L,D-transpeptidase LdtMt2 of ''Mycobaterium tuberculosis''. These enzymes transfer the peptide bond between the third residue (meso-diaminopimelic acid) of a tetrapeptide donor stem to the side-chain amide group of the third residue (meso-diaminopimelic acid) of an adjacent acceptor stem. In both types of transpeptidases, the catalysis proceeds by a two-step mechanism: acylation of the enzyme by the penultimate peptide of the donor stem with the release of the stem C-terminal residue, followed by deacylation of this acyl-enzyme intermediate by an acceptor stem. |
Revision as of 12:59, 10 June 2019
Overview
|
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644