6j5l
From Proteopedia
(Difference between revisions)
Line 3: | Line 3: | ||
<StructureSection load='6j5l' size='340' side='right'caption='[[6j5l]], [[Resolution|resolution]] 2.30Å' scene=''> | <StructureSection load='6j5l' size='340' side='right'caption='[[6j5l]], [[Resolution|resolution]] 2.30Å' scene=''> | ||
== Structural highlights == | == Structural highlights == | ||
- | <table><tr><td colspan='2'>[[6j5l]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6J5L OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6J5L FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[6j5l]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6J5L OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6J5L FirstGlance]. <br> |
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=B9C:N-{2-[({3-[6-(piperazin-1-yl)pyridin-3-yl]-1H-indazol-5-yl}amino)methyl]phenyl}methanesulfonamide'>B9C</scene></td></tr> | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=B9C:N-{2-[({3-[6-(piperazin-1-yl)pyridin-3-yl]-1H-indazol-5-yl}amino)methyl]phenyl}methanesulfonamide'>B9C</scene></td></tr> | ||
+ | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">NTRK1, MTC, TRK, TRKA ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | ||
<tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Receptor_protein-tyrosine_kinase Receptor protein-tyrosine kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.1 2.7.10.1] </span></td></tr> | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Receptor_protein-tyrosine_kinase Receptor protein-tyrosine kinase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.7.10.1 2.7.10.1] </span></td></tr> | ||
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6j5l FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6j5l OCA], [http://pdbe.org/6j5l PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6j5l RCSB], [http://www.ebi.ac.uk/pdbsum/6j5l PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6j5l ProSAT]</span></td></tr> | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6j5l FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6j5l OCA], [http://pdbe.org/6j5l PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6j5l RCSB], [http://www.ebi.ac.uk/pdbsum/6j5l PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6j5l ProSAT]</span></td></tr> | ||
Line 12: | Line 13: | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/NTRK1_HUMAN NTRK1_HUMAN]] Receptor tyrosine kinase involved in the development and the maturation of the central and peripheral nervous systems through regulation of proliferation, differentiation and survival of sympathetic and nervous neurons. High affinity receptor for NGF which is its primary ligand, it can also bind and be activated by NTF3/neurotrophin-3. However, NTF3 only supports axonal extension through NTRK1 but has no effect on neuron survival. Upon dimeric NGF ligand-binding, undergoes homodimerization, autophosphorylation and activation. Recruits, phosphorylates and/or activates several downstream effectors including SHC1, FRS2, SH2B1, SH2B2 and PLCG1 that regulate distinct overlapping signaling cascades driving cell survival and differentiation. Through SHC1 and FRS2 activates a GRB2-Ras-MAPK cascade that regulates cell differentiation and survival. Through PLCG1 controls NF-Kappa-B activation and the transcription of genes involved in cell survival. Through SHC1 and SH2B1 controls a Ras-PI3 kinase-AKT1 signaling cascade that is also regulating survival. In absence of ligand and activation, may promote cell death, making the survival of neurons dependent on trophic factors.<ref>PMID:1850821</ref> <ref>PMID:1849459</ref> <ref>PMID:8325889</ref> <ref>PMID:8155326</ref> <ref>PMID:11244088</ref> <ref>PMID:15488758</ref> Isoform TrkA-III is resistant to NGF, constitutively activates AKT1 and NF-kappa-B and is unable to activate the Ras-MAPK signaling cascade. Antagonizes the anti-proliferative NGF-NTRK1 signaling that promotes neuronal precursors differentiation. Isoform TrkA-III promotes angiogenesis and has oncogenic activity when overexpressed.<ref>PMID:1850821</ref> <ref>PMID:1849459</ref> <ref>PMID:8325889</ref> <ref>PMID:8155326</ref> <ref>PMID:11244088</ref> <ref>PMID:15488758</ref> | [[http://www.uniprot.org/uniprot/NTRK1_HUMAN NTRK1_HUMAN]] Receptor tyrosine kinase involved in the development and the maturation of the central and peripheral nervous systems through regulation of proliferation, differentiation and survival of sympathetic and nervous neurons. High affinity receptor for NGF which is its primary ligand, it can also bind and be activated by NTF3/neurotrophin-3. However, NTF3 only supports axonal extension through NTRK1 but has no effect on neuron survival. Upon dimeric NGF ligand-binding, undergoes homodimerization, autophosphorylation and activation. Recruits, phosphorylates and/or activates several downstream effectors including SHC1, FRS2, SH2B1, SH2B2 and PLCG1 that regulate distinct overlapping signaling cascades driving cell survival and differentiation. Through SHC1 and FRS2 activates a GRB2-Ras-MAPK cascade that regulates cell differentiation and survival. Through PLCG1 controls NF-Kappa-B activation and the transcription of genes involved in cell survival. Through SHC1 and SH2B1 controls a Ras-PI3 kinase-AKT1 signaling cascade that is also regulating survival. In absence of ligand and activation, may promote cell death, making the survival of neurons dependent on trophic factors.<ref>PMID:1850821</ref> <ref>PMID:1849459</ref> <ref>PMID:8325889</ref> <ref>PMID:8155326</ref> <ref>PMID:11244088</ref> <ref>PMID:15488758</ref> Isoform TrkA-III is resistant to NGF, constitutively activates AKT1 and NF-kappa-B and is unable to activate the Ras-MAPK signaling cascade. Antagonizes the anti-proliferative NGF-NTRK1 signaling that promotes neuronal precursors differentiation. Isoform TrkA-III promotes angiogenesis and has oncogenic activity when overexpressed.<ref>PMID:1850821</ref> <ref>PMID:1849459</ref> <ref>PMID:8325889</ref> <ref>PMID:8155326</ref> <ref>PMID:11244088</ref> <ref>PMID:15488758</ref> | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | The design, synthesis, and biological evaluation of novel 3-aryl-indazole derivatives as peripherally selective pan-Trk inhibitors are described. Three strategies were used to obtain a potent compound exhibiting low central nervous system (CNS) penetration and high plasma exposure: 1) a structure-based drug design (SBDD) approach was used to improve potency; 2) a substrate for an efflux transporter for lowering brain penetration was explored; and 3) the most basic pKa (pKa-MB) value was used as an indicator to identify compounds with good membrane permeability. This enabled the identification of the peripherally targeted 17c with the potency, kinase-selectivity, and plasma exposure required to demonstrate in vivo efficacy in a Complete Freund's adjuvant (CFA)-induced thermal hypersensitivity model. | ||
+ | |||
+ | The discovery of novel 3-aryl-indazole derivatives as peripherally restricted pan-Trk inhibitors for the treatment of pain.,Shirahashi H, Toriihara E, Suenaga Y, Yoshida H, Akaogi K, Endou Y, Wakabayashi M, Takashima M Bioorg Med Chem Lett. 2019 Jun 17. pii: S0960-894X(19)30398-1. doi:, 10.1016/j.bmcl.2019.06.018. PMID:31235262<ref>PMID:31235262</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 6j5l" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> | ||
__TOC__ | __TOC__ | ||
</StructureSection> | </StructureSection> | ||
+ | [[Category: Human]] | ||
[[Category: Large Structures]] | [[Category: Large Structures]] | ||
[[Category: Receptor protein-tyrosine kinase]] | [[Category: Receptor protein-tyrosine kinase]] |
Revision as of 08:37, 24 July 2019
Crystal structure of Trk-A in complex with the Pan-Trk Kinase Inhibitor, compound 10e
|