3l6p

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 3: Line 3:
<StructureSection load='3l6p' size='340' side='right'caption='[[3l6p]], [[Resolution|resolution]] 2.20&Aring;' scene=''>
<StructureSection load='3l6p' size='340' side='right'caption='[[3l6p]], [[Resolution|resolution]] 2.20&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[3l6p]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3L6P OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3L6P FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[3l6p]] is a 1 chain structure. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3L6P OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3L6P FirstGlance]. <br>
-
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CD:CADMIUM+ION'>CD</scene>, <scene name='pdbligand=NI:NICKEL+(II)+ION'>NI</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
+
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CD:CADMIUM+ION'>CD</scene>, <scene name='pdbligand=NI:NICKEL+(II)+ION'>NI</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr>
-
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3lkw|3lkw]]</td></tr>
+
<tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3lkw|3lkw]]</div></td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3l6p FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3l6p OCA], [http://pdbe.org/3l6p PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3l6p RCSB], [http://www.ebi.ac.uk/pdbsum/3l6p PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3l6p ProSAT]</span></td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3l6p FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3l6p OCA], [https://pdbe.org/3l6p PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3l6p RCSB], [https://www.ebi.ac.uk/pdbsum/3l6p PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3l6p ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/POLG_DEN1S POLG_DEN1S]] Protein C: Plays a role in virus budding by binding to membrane and gathering the viral RNA into a nucleocapsid that forms the core of a mature virus particle. During virus entry, may induce genome penetration in host cytoplasm after hemifusion induced by surface proteins. Can migrate tot cell nucleus where it modulates host functions.[UniProtKB:P17763] Peptide pr: Prevents premature fusion activity of envelope proteins in trans Golgi by binding to envelope protein E at pH6.0. After virion release in extracellular space gets dissociated from E dimers.[UniProtKB:P17763] Protein prM: Acts as a chaperone for envelope protein E during intracellular virion assembly by masking and inactivating envelope protein E fusion peptide. prM is the only viral peptide matured by host furin in the trans-Golgi network. Presumably to avoid catastrophic activation of the viral fusion activity in acidic GolGi compartment prior to virion release. prM-E cleavage is ineficient, and many virions are only partially matured. These uncleaved prM would play a role in immune evasion.[UniProtKB:P17763] Small envelope protein M: May play a role in virus budding. Exerts cytotoxic effects by activating a mitochondrial apoptotic pathway through M extodomain. May display a viroporin activity.[UniProtKB:P17763] Envelope protein E: Binds to host cell surface receptor and mediates fusion between viral and cellular membranes. Envelope protein is synthesized in the endoplasmic reticulum in the form of heterodimer with protein prM. They play a role in virion budding in the ER, and the newly formed immature particule is covered with 60 spikes composed of heterodimer between precursor prM and envelope protein E. The virion is transported to the Golgi apparatus where the low pH causes dissociation of PrM-E heterodimers and formation of E homodimers. prM-E cleavage is ineficient, and many virions are only partially matured. These uncleaved prM would play a role in immune evasion.[UniProtKB:P17763] Non-structural protein 1: Involved in immune evasion, pathogenesis and viral replication. Once cleaved off the polyprotein, is targeted to three destinations: the viral replication cycle, the plasma membrane and the extracellular compartment. May play a role in viral genome replication. Assist membrane bending and envelopment of genomic RNA at the endoplasmic reticulum. Excreted as a hexameric lipoparticle that plays a role against host immune responce.[UniProtKB:P17763] Non-structural protein 2A: Component of the viral RNA replication complex that functions in virion assembly and antagonizes the host immune response.[UniProtKB:P17763] Non-structural protein 2B: Required cofactor for the serine protease function of NS3 (By similarity). May have membrane-destabilizing activity and form viroporins (By similarity).[UniProtKB:P17763][PROSITE-ProRule:PRU00859] Serine protease NS3: Displays three enzymatic activities: serine protease, NTPase and RNA helicase. NS3 serine protease, in association with NS2B, performs its autocleavage and cleaves the polyprotein at dibasic sites in the cytoplasm: C-prM, NS2A-NS2B, NS2B-NS3, NS3-NS4A, NS4A-2K and NS4B-NS5. NS3 RNA helicase binds RNA and unwinds dsRNA in the 3' to 5' direction.[PROSITE-ProRule:PRU00860] Non-structural protein 4A: Induces host endoplasmic regulate the ATPase activity of the NS3 helicase.[UniProtKB:P17763] Peptide 2k: Functions as a signal peptide for NS4B and is required for the interferon antagonism activity of the latter.[UniProtKB:P17763] Non-structural protein 4B: Inhibits interferon (IFN)-induced host STAT1 phosphorylation and nuclear translocation, thereby preventing the establishment of cellular antiviral state by blocking the IFN-alpha/beta pathway.[UniProtKB:P17763] RNA-directed RNA polymerase NS5: Replicates the viral (+) and (-) genome, and performs the capping of genomes in the cytoplasm. NS5 methylates viral RNA cap at guanine N-7 and ribose 2'-O positions. Besides its role in genome replication, also prevents the establishment of cellular antiviral state by blocking the interferon-alpha/beta (IFN-alpha/beta) signaling pathway. Inhibits host TYK2 and STAT2 phosphorylation, thereby preventing activation of JAK-STAT signaling pathway.[UniProtKB:P17763]
+
[[https://www.uniprot.org/uniprot/POLG_DEN1S POLG_DEN1S]] Protein C: Plays a role in virus budding by binding to membrane and gathering the viral RNA into a nucleocapsid that forms the core of a mature virus particle. During virus entry, may induce genome penetration in host cytoplasm after hemifusion induced by surface proteins. Can migrate tot cell nucleus where it modulates host functions.[UniProtKB:P17763] Peptide pr: Prevents premature fusion activity of envelope proteins in trans Golgi by binding to envelope protein E at pH6.0. After virion release in extracellular space gets dissociated from E dimers.[UniProtKB:P17763] Protein prM: Acts as a chaperone for envelope protein E during intracellular virion assembly by masking and inactivating envelope protein E fusion peptide. prM is the only viral peptide matured by host furin in the trans-Golgi network. Presumably to avoid catastrophic activation of the viral fusion activity in acidic GolGi compartment prior to virion release. prM-E cleavage is ineficient, and many virions are only partially matured. These uncleaved prM would play a role in immune evasion.[UniProtKB:P17763] Small envelope protein M: May play a role in virus budding. Exerts cytotoxic effects by activating a mitochondrial apoptotic pathway through M extodomain. May display a viroporin activity.[UniProtKB:P17763] Envelope protein E: Binds to host cell surface receptor and mediates fusion between viral and cellular membranes. Envelope protein is synthesized in the endoplasmic reticulum in the form of heterodimer with protein prM. They play a role in virion budding in the ER, and the newly formed immature particule is covered with 60 spikes composed of heterodimer between precursor prM and envelope protein E. The virion is transported to the Golgi apparatus where the low pH causes dissociation of PrM-E heterodimers and formation of E homodimers. prM-E cleavage is ineficient, and many virions are only partially matured. These uncleaved prM would play a role in immune evasion.[UniProtKB:P17763] Non-structural protein 1: Involved in immune evasion, pathogenesis and viral replication. Once cleaved off the polyprotein, is targeted to three destinations: the viral replication cycle, the plasma membrane and the extracellular compartment. May play a role in viral genome replication. Assist membrane bending and envelopment of genomic RNA at the endoplasmic reticulum. Excreted as a hexameric lipoparticle that plays a role against host immune responce.[UniProtKB:P17763] Non-structural protein 2A: Component of the viral RNA replication complex that functions in virion assembly and antagonizes the host immune response.[UniProtKB:P17763] Non-structural protein 2B: Required cofactor for the serine protease function of NS3 (By similarity). May have membrane-destabilizing activity and form viroporins (By similarity).[UniProtKB:P17763][PROSITE-ProRule:PRU00859] Serine protease NS3: Displays three enzymatic activities: serine protease, NTPase and RNA helicase. NS3 serine protease, in association with NS2B, performs its autocleavage and cleaves the polyprotein at dibasic sites in the cytoplasm: C-prM, NS2A-NS2B, NS2B-NS3, NS3-NS4A, NS4A-2K and NS4B-NS5. NS3 RNA helicase binds RNA and unwinds dsRNA in the 3' to 5' direction.[PROSITE-ProRule:PRU00860] Non-structural protein 4A: Induces host endoplasmic regulate the ATPase activity of the NS3 helicase.[UniProtKB:P17763] Peptide 2k: Functions as a signal peptide for NS4B and is required for the interferon antagonism activity of the latter.[UniProtKB:P17763] Non-structural protein 4B: Inhibits interferon (IFN)-induced host STAT1 phosphorylation and nuclear translocation, thereby preventing the establishment of cellular antiviral state by blocking the IFN-alpha/beta pathway.[UniProtKB:P17763] RNA-directed RNA polymerase NS5: Replicates the viral (+) and (-) genome, and performs the capping of genomes in the cytoplasm. NS5 methylates viral RNA cap at guanine N-7 and ribose 2'-O positions. Besides its role in genome replication, also prevents the establishment of cellular antiviral state by blocking the interferon-alpha/beta (IFN-alpha/beta) signaling pathway. Inhibits host TYK2 and STAT2 phosphorylation, thereby preventing activation of JAK-STAT signaling pathway.[UniProtKB:P17763]
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==
Line 21: Line 21:
==See Also==
==See Also==
-
*[[Nonstructural protein|Nonstructural protein]]
+
*[[Nonstructural protein 3D structures|Nonstructural protein 3D structures]]
== References ==
== References ==
<references/>
<references/>

Revision as of 13:37, 4 May 2022

Crystal Structure of Dengue Virus 1 NS2B/NS3 protease

PDB ID 3l6p

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools