|
|
Line 3: |
Line 3: |
| <StructureSection load='5niw' size='340' side='right'caption='[[5niw]], [[Resolution|resolution]] 1.80Å' scene=''> | | <StructureSection load='5niw' size='340' side='right'caption='[[5niw]], [[Resolution|resolution]] 1.80Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5niw]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/A._niger A. niger]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5NIW OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5NIW FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5niw]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Aspergillus_niger Aspergillus niger]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5NIW OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5NIW FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=DIO:1,4-DIETHYLENE+DIOXIDE'>DIO</scene>, <scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=OXY:OXYGEN+MOLECULE'>OXY</scene>, <scene name='pdbligand=P4C:O-ACETALDEHYDYL-HEXAETHYLENE+GLYCOL'>P4C</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.8Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">gox ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=5061 A. niger])</td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=BMA:BETA-D-MANNOSE'>BMA</scene>, <scene name='pdbligand=DIO:1,4-DIETHYLENE+DIOXIDE'>DIO</scene>, <scene name='pdbligand=FAD:FLAVIN-ADENINE+DINUCLEOTIDE'>FAD</scene>, <scene name='pdbligand=NAG:N-ACETYL-D-GLUCOSAMINE'>NAG</scene>, <scene name='pdbligand=OXY:OXYGEN+MOLECULE'>OXY</scene>, <scene name='pdbligand=P4C:O-ACETALDEHYDYL-HEXAETHYLENE+GLYCOL'>P4C</scene>, <scene name='pdbligand=PEG:DI(HYDROXYETHYL)ETHER'>PEG</scene></td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Glucose_oxidase Glucose oxidase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=1.1.3.4 1.1.3.4] </span></td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5niw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5niw OCA], [https://pdbe.org/5niw PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5niw RCSB], [https://www.ebi.ac.uk/pdbsum/5niw PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5niw ProSAT]</span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5niw FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5niw OCA], [http://pdbe.org/5niw PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5niw RCSB], [http://www.ebi.ac.uk/pdbsum/5niw PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5niw ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/GOX_ASPNG GOX_ASPNG] |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 22: |
Line 23: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: A. niger]] | + | [[Category: Aspergillus niger]] |
- | [[Category: Glucose oxidase]]
| + | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Frank, D]] | + | [[Category: Frank D]] |
- | [[Category: Hoffmann, K]] | + | [[Category: Hoffmann K]] |
- | [[Category: His516 conformation]]
| + | |
- | [[Category: Oxidoreductase]]
| + | |
- | [[Category: Oxygen activation]]
| + | |
| Structural highlights
5niw is a 1 chain structure with sequence from Aspergillus niger. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
| Method: | X-ray diffraction, Resolution 1.8Å |
Ligands: | , , , , , , |
Resources: | FirstGlance, OCA, PDBe, RCSB, PDBsum, ProSAT |
Function
GOX_ASPNG
Publication Abstract from PubMed
Glucose oxidase has wide applications in the pharmaceutical, chemical, and food industries. Many recent studies have enhanced key properties of this enzyme using directed evolution, yet without being able to reveal why these mutations are actually beneficial. This work presents a synergistic combination of experimental and computational methods, indicating how mutations, even when distant from the active site, positively affect glucose oxidase catalysis. We have determined the crystal structures of glucose oxidase mutants containing molecular oxygen in the active site. The catalytically important His516 residue has been previously shown to be flexible in the wild-type enzyme. The molecular dynamics simulations performed in this work allow us to quantify this floppiness, revealing that His516 exists in two states: catalytic and noncatalytic. The relative populations of these two substates are almost identical in the wild-type enzyme, with His516 readily shuffling between them. In the glucose oxidase mutants, on the other hand, the mutations enrich the catalytic His516 conformation and reduce the flexibility of this residue, leading to an enhancement in their catalytic efficiency. This study stresses the benefit of active site preorganization with respect to enzyme conversion rates by reducing molecular reorientation needs. We further suggest that the computational approach based on Hamiltonian replica exchange molecular dynamics, used in this study, may be a general approach to screening in silico for improved enzyme variants involving flexible catalytic residues.
Shuffling Active Site Substate Populations Affects Catalytic Activity: The Case of Glucose Oxidase.,Petrovic D, Frank D, Kamerlin SCL, Hoffmann K, Strodel B ACS Catal. 2017 Sep 1;7(9):6188-6197. doi: 10.1021/acscatal.7b01575. Epub 2017, Aug 1. PMID:29291138[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Petrovic D, Frank D, Kamerlin SCL, Hoffmann K, Strodel B. Shuffling Active Site Substate Populations Affects Catalytic Activity: The Case of Glucose Oxidase. ACS Catal. 2017 Sep 1;7(9):6188-6197. doi: 10.1021/acscatal.7b01575. Epub 2017, Aug 1. PMID:29291138 doi:http://dx.doi.org/10.1021/acscatal.7b01575
|