6f7c
From Proteopedia
(Difference between revisions)
Line 10: | Line 10: | ||
== Function == | == Function == | ||
[[http://www.uniprot.org/uniprot/TBA1B_BOVIN TBA1B_BOVIN]] Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha chain. [[http://www.uniprot.org/uniprot/STMN4_RAT STMN4_RAT]] Exhibits microtubule-destabilizing activity.<ref>PMID:15039434</ref> <ref>PMID:12111843</ref> <ref>PMID:15014504</ref> [[http://www.uniprot.org/uniprot/TBB2B_BOVIN TBB2B_BOVIN]] Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha chain (By similarity). | [[http://www.uniprot.org/uniprot/TBA1B_BOVIN TBA1B_BOVIN]] Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha chain. [[http://www.uniprot.org/uniprot/STMN4_RAT STMN4_RAT]] Exhibits microtubule-destabilizing activity.<ref>PMID:15039434</ref> <ref>PMID:12111843</ref> <ref>PMID:15014504</ref> [[http://www.uniprot.org/uniprot/TBB2B_BOVIN TBB2B_BOVIN]] Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha chain (By similarity). | ||
+ | <div style="background-color:#fffaf0;"> | ||
+ | == Publication Abstract from PubMed == | ||
+ | Tubulin is one of the best validated anti-cancer targets, but most anti-tubulin agents have unfavorable therapeutic indexes. Here, we characterized the tubulin-binding activity, the mechanism of action, and the in vivo anti-leukemia efficacy of three 3,4,5-trimethoxy-N-acylhydrazones. We show that all compounds target the colchicine-binding site of tubulin and that none is a substrate of ABC transporters. The crystal structure of the tubulin-bound N-(1'-naphthyl)-3,4,5-trimethoxybenzohydrazide (12) revealed steric hindrance on the T7 loop movement of beta-tubulin, thereby rendering tubulin assembly incompetent. Using dose escalation and short-term repeated dose studies, we further report that this compound class is well tolerated to >100 mg/kg in mice. We finally observed that intraperitoneally administered compound 12 significantly prolonged the overall survival of mice transplanted with both sensitive and multidrug-resistant acute lymphoblastic leukemia (ALL) cells. Taken together, this work describes promising colchicine-site-targeting tubulin inhibitors featuring favorable therapeutic effects against ALL and multidrug-resistant cells. | ||
+ | |||
+ | Structural Basis of Colchicine-Site targeting Acylhydrazones active against Multidrug-Resistant Acute Lymphoblastic Leukemia.,Cury NM, Muhlethaler T, Laranjeira ABA, Canevarolo RR, Zenatti PP, Lucena-Agell D, Barasoain I, Song C, Sun D, Dovat S, Yunes RA, Prota AE, Steinmetz MO, Diaz JF, Yunes JA iScience. 2019 Oct 2;21:95-109. doi: 10.1016/j.isci.2019.10.003. PMID:31655259<ref>PMID:31655259</ref> | ||
+ | |||
+ | From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.<br> | ||
+ | </div> | ||
+ | <div class="pdbe-citations 6f7c" style="background-color:#fffaf0;"></div> | ||
== References == | == References == | ||
<references/> | <references/> |
Current revision
TUBULIN-Compound 12 complex
|