|
|
Line 3: |
Line 3: |
| <StructureSection load='1kea' size='340' side='right'caption='[[1kea]], [[Resolution|resolution]] 2.00Å' scene=''> | | <StructureSection load='1kea' size='340' side='right'caption='[[1kea]], [[Resolution|resolution]] 2.00Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[1kea]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/"methanobacterium_thermoautotrophicus"_(sic)_zeikus_and_wolfe_1972 "methanobacterium thermoautotrophicus" (sic) zeikus and wolfe 1972]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1KEA OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1KEA FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[1kea]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/"methanobacterium_thermoautotrophicus"_(sic)_zeikus_and_wolfe_1972 "methanobacterium thermoautotrophicus" (sic) zeikus and wolfe 1972]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=1KEA OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=1KEA FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=ACT:ACETATE+ION'>ACT</scene>, <scene name='pdbligand=CL:CHLORIDE+ION'>CL</scene>, <scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=1kea FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1kea OCA], [http://pdbe.org/1kea PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=1kea RCSB], [http://www.ebi.ac.uk/pdbsum/1kea PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=1kea ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=1kea FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=1kea OCA], [https://pdbe.org/1kea PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=1kea RCSB], [https://www.ebi.ac.uk/pdbsum/1kea PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=1kea ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/GTMR_METTF GTMR_METTF]] Could act in DNA repair. Restriction methylase M.mthtI, which is encoded by this plasmid, generates 5-methylcytosine which is, especially under thermophilic conditions, subject to deamination resulting in G-T mismatches. This protein could correct these mismatches. | + | [[https://www.uniprot.org/uniprot/GTMR_METTF GTMR_METTF]] Could act in DNA repair. Restriction methylase M.mthtI, which is encoded by this plasmid, generates 5-methylcytosine which is, especially under thermophilic conditions, subject to deamination resulting in G-T mismatches. This protein could correct these mismatches. |
| == Evolutionary Conservation == | | == Evolutionary Conservation == |
| [[Image:Consurf_key_small.gif|200px|right]] | | [[Image:Consurf_key_small.gif|200px|right]] |
| Structural highlights
Function
[GTMR_METTF] Could act in DNA repair. Restriction methylase M.mthtI, which is encoded by this plasmid, generates 5-methylcytosine which is, especially under thermophilic conditions, subject to deamination resulting in G-T mismatches. This protein could correct these mismatches.
Evolutionary Conservation
Check, as determined by ConSurfDB. You may read the explanation of the method and the full data available from ConSurf.
Publication Abstract from PubMed
The repair of T:G mismatches in DNA is key for maintaining bacterial restriction/modification systems and gene silencing in higher eukaryotes. T:G mismatch repair can be initiated by a specific mismatch glycosylase (MIG) that is homologous to the helix-hairpin-helix (HhH) DNA repair enzymes. Here, we present a 2.0 A resolution crystal structure and complementary mutagenesis results for this thermophilic HhH MIG enzyme. The results suggest that MIG distorts the target thymine nucleotide by twisting the thymine base approximately 90 degrees away from its normal anti position within DNA. We propose that functionally significant differences exist in DNA repair enzyme extrahelical nucleotide binding and catalysis that are characteristic of whether the target base is damaged or is a normal base within a mispair. These results explain why pure HhH DNA glycosylases and combined glycosylase/AP lyases cannot be interconverted by simply altering their functional group chemistry, and how broad-specificity DNA glycosylase enzymes may weaken the glycosylic linkage to allow a variety of damaged DNA bases to be excised.
Structure and activity of a thermostable thymine-DNA glycosylase: evidence for base twisting to remove mismatched normal DNA bases.,Mol CD, Arvai AS, Begley TJ, Cunningham RP, Tainer JA J Mol Biol. 2002 Jan 18;315(3):373-84. PMID:11786018[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Mol CD, Arvai AS, Begley TJ, Cunningham RP, Tainer JA. Structure and activity of a thermostable thymine-DNA glycosylase: evidence for base twisting to remove mismatched normal DNA bases. J Mol Biol. 2002 Jan 18;315(3):373-84. PMID:11786018 doi:10.1006/jmbi.2001.5264
|