5-hydroxytryptamine receptor

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 18: Line 18:
For more details see [[5-ht3a receptor]] and [[Ion channels]].
For more details see [[5-ht3a receptor]] and [[Ion channels]].
-
=== The extracellular subunit interface of the 5-HT3 receptors: a computational alanine scanning mutagenesis study ===
+
=== The extracellular subunit interface of the 5-HT3 receptors: a computational alanine scanning mutagenesis study<ref>DOI 10.1080/07391102.2012.680029</ref> ===
-
<big>Francesca De Rienzo, Arménio J. Moura Barbosa, Marta A.S. Perez, Pedro A. Fernandes, Maria J. Ramos, Maria Cristina Menziani</big> <ref>DOI 10.1080/07391102.2012.680029</ref>
+
 
-
<hr/>
+
-
<b>Molecular Tour</b><br>
+
The serotonin type-3 receptor (5-HT3-R) is a cation selective transmembrane protein channel that belongs to the Cys–loop Ligand-Gated Ion Channel (LGIC) superfamily (http://www.ebi.ac.uk/compneur-srv/LGICdb/LGICdb.php), which also includes receptors for nicotinic acetylcholine (<scene name='Journal:JBSD:16/Cv/2'>nAChR</scene>, PDB code [[2bg9]]), &#947;-aminobutyric acid and glycine. 5-HT3-R is involved in signal transmission in the central and peripheral nervous system and its malfunctioning leads to neurodegenerative and psychiatric diseases, therefore it is an important target for drug design research. A few drugs active against 5-HT3-R are already on the market, such as, for example, palonosetron (http://en.wikipedia.org/wiki/Palonosetron) and granisetron (http://en.wikipedia.org/wiki/Granisetron).
The serotonin type-3 receptor (5-HT3-R) is a cation selective transmembrane protein channel that belongs to the Cys–loop Ligand-Gated Ion Channel (LGIC) superfamily (http://www.ebi.ac.uk/compneur-srv/LGICdb/LGICdb.php), which also includes receptors for nicotinic acetylcholine (<scene name='Journal:JBSD:16/Cv/2'>nAChR</scene>, PDB code [[2bg9]]), &#947;-aminobutyric acid and glycine. 5-HT3-R is involved in signal transmission in the central and peripheral nervous system and its malfunctioning leads to neurodegenerative and psychiatric diseases, therefore it is an important target for drug design research. A few drugs active against 5-HT3-R are already on the market, such as, for example, palonosetron (http://en.wikipedia.org/wiki/Palonosetron) and granisetron (http://en.wikipedia.org/wiki/Granisetron).
The 5-HT3R is made of five monomers assembled in a <scene name='Journal:JBSD:16/Cv/4'>pseudo-symmetric pentameric shape</scene> to form an ion channel permeable to small ions (Na+, K+); each subunit contains three domains: an <scene name='Journal:JBSD:16/Cv/3'>intracellular portion, a transmembrane domain and an extracellular region</scene> (shown on the example of nAChR, [[2bg9]]). To date, five different 5-HT3-R subunits have been identified, the 5-HT3 A, B, C, D and E; however, only subunits A and B have been extensively characterised experimentally. The <scene name='Journal:JBSD:16/Cv/6'>ligand binding site</scene> of nAChR is located at the extracellular region, at the interface between two monomers (α-γ and α-δ; 2 identical α monomers, chains A and D, are colored in same color - lavender), called the principal and the complementary subunits.
The 5-HT3R is made of five monomers assembled in a <scene name='Journal:JBSD:16/Cv/4'>pseudo-symmetric pentameric shape</scene> to form an ion channel permeable to small ions (Na+, K+); each subunit contains three domains: an <scene name='Journal:JBSD:16/Cv/3'>intracellular portion, a transmembrane domain and an extracellular region</scene> (shown on the example of nAChR, [[2bg9]]). To date, five different 5-HT3-R subunits have been identified, the 5-HT3 A, B, C, D and E; however, only subunits A and B have been extensively characterised experimentally. The <scene name='Journal:JBSD:16/Cv/6'>ligand binding site</scene> of nAChR is located at the extracellular region, at the interface between two monomers (α-γ and α-δ; 2 identical α monomers, chains A and D, are colored in same color - lavender), called the principal and the complementary subunits.

Revision as of 14:36, 12 November 2019

Human 5-hydroxytryptamine receptor 1B chimera with E. coli cytochrome B562 complex with ergotamine (PDB code 4iar)

Drag the structure with the mouse to rotate


References

  1. Goodsell D. Serotonin Receptor. RCSB PDB-101 (2013) DOI: 10.2210/rcsb_pdb/mom_2013_8
  2. 2.0 2.1 2.2 2.3 Wang C, Jiang Y, Ma J, Wu H, Wacker D, Katritch V, Han GW, Liu W, Huang XP, Vardy E, McCorvy JD, Gao X, Zhou EZ, Melcher K, Zhang C, Bai F, Yang H, Yang L, Jiang H, Roth BL, Cherezov V, Stevens RC, Xu HE. Structural Basis for Molecular Recognition at Serotonin Receptors. Science. 2013 May 3; 340(6132): 610–614. PMID:3644373 [1]
  3. Wiebke J, Schymura Y, Novoyatleva T, Kojonazarov B, Boehm M, Wietelmann A, Luitel H, Murmann K, Krompiec DR, Tretyn A, Pullamsetti SS, Weissmann N, Seeger W, Ghofrani HA, Schermuly RT. 5-HT2B Receptor Antagonists Inhibit Fibrosis and Protect from RV Heart Failure. Biomed Res Int. 2015; 2015: 438403. PMID:4312574 [2]
  4. Nebigil, Etienne, Schaerlinger, Hickel, Launay, Maroteaux. Developmentally Regulated Serotonin 5-HT2B Receptors. DOI: 10.1016/S0736-5748(01)00022-3
  5. Berumen LC, Rodriguez A, Miledi R, Gracia-Alcocer G. Serotonin Receptors in Hippocampus. ScientificWorldJournal. 2012;2012:823493. Epub 2012 May 2. PMID:3353568 [3]
  6. Millan MJ. Serotonin 5-HT2C receptors as a target for the treatment of depressive and anxious states: focus on novel therapeutic strategies. Therapie. 2005 Sep-Oct;60(5):441-60. PMID:16433010
  7. Ge T, Zhang Z, Lv J, Song Y, Fan J, Liu W, Wang X, Hall FS, Li B, Cui R. The role of 5-HT2c receptor on corticosterone-mediated food intake. J Biochem Mol Toxicol. 2017 Jun;31(6). doi: 10.1002/jbt.21890. Epub 2017 Feb 10. PMID:28186389 doi:http://dx.doi.org/10.1002/jbt.21890
  8. Hassaine G,Cedric D, Luigino G, Romain W, Menno BT, Ruud H, Alexandra G, Henning S, Takashi T, Aline D, Christophe M, Xiao-Dan L, Frederic P, Horst V, Hugues N. X-ray Structure of the Mouse Serotonin 5-HT3 Receptor. Nature 512.7514 (2014): 276-81.DOI:10.1038/nature13552
  9. 9.0 9.1 9.2 Thompson AJ, Lummis SCR. 5-HT3 Receptors. Curr Pharm Des. 2006; 12(28): 3615–3630. PMID:2664614 [4]
  10. De Rienzo F, Moura Barbosa AJ, Perez MA, Fernandes PA, Ramos MJ, Menziani MC. The extracellular subunit interface of the 5-HT(3) receptors: a computational alanine scanning mutagenesis study. J Biomol Struct Dyn. 2012 Jul;30(3):280-98. Epub 2012 Jun 12. PMID:22694192 doi:10.1080/07391102.2012.680029
  11. Moura Barbosa AJ, De Rienzo F, Ramos MJ, Menziani MC. Computational analysis of ligand recognition sites of homo- and heteropentameric 5-HT3 receptors. Eur J Med Chem. 2010 Nov;45(11):4746-60. Epub 2010 Jul 27. PMID:20724042 doi:10.1016/j.ejmech.2010.07.039
  12. Moreira IS, Fernandes PA, Ramos MJ. Computational alanine scanning mutagenesis--an improved methodological approach. J Comput Chem. 2007 Feb;28(3):644-54. PMID:17195156 doi:10.1002/jcc.20566
  13. De Rienzo F, Moura Barbosa AJ, Perez MA, Fernandes PA, Ramos MJ, Menziani MC. The extracellular subunit interface of the 5-HT(3) receptors: a computational alanine scanning mutagenesis study. J Biomol Struct Dyn. 2012 Jul;30(3):280-98. Epub 2012 Jun 12. PMID:22694192 doi:10.1080/07391102.2012.680029
  14. De Rienzo F, Del Cadia M, Menziani MC. A first step towards the understanding of the 5-HT(3) receptor subunit heterogeneity from a computational point of view. Phys Chem Chem Phys. 2012 Sep 28;14(36):12625-36. Epub 2012 Aug 9. PMID:22880201 doi:10.1039/c2cp41028a
  15. Maksay G, Zsolt B, Miklós S. Binding Interactions of Antagonists with 5‐Hydroxytryptamine 3A Receptor Models. Journal of Receptors and Signal Transduction 23.2-3 (2003): 255-70. DOI:10.1081/RRS-120025568
  16. Brunton LL, Lazo JS, Parker KL. (2006). Goddman & Gilman's The Pharmacological Basis of Therapeutics. New York: McGraw-Hill. pp. 1000–3. ISBN 978-0-07-142280-2.
Personal tools