Sandbox Reserved 1586

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 8: Line 8:
== History ==
== History ==
-
Leadzyme was discovered by Uhlenbeck and co-worked in 1992, while they were searching for RNAs that cleaved in the presence of lead <ref name="red">PMID:9813122</ref> . The discovery was by ''in vitro'' selection, which allows for an isolation and amplification of selected functional molecules. This method has been key in the discovery of numerous RNA and DNA catalysis. Leadzyme, or lead-dependent ribozyme, is among the smallest known catalytic RNAs <ref name=red/> .
+
<scene name='82/824631/Stereoview/1'>Leadzyme</scene> was discovered by Uhlenbeck and co-worked in 1992, while they were searching for RNAs that cleaved in the presence of lead <ref name="red">PMID:9813122</ref> . The discovery was by ''in vitro'' selection, which allows for an isolation and amplification of selected functional molecules. This method has been key in the discovery of numerous RNA and DNA catalysis. Leadzyme, or lead-dependent ribozyme, is among the smallest known catalytic RNAs <ref name=red/> .
== Function ==
== Function ==

Revision as of 18:45, 18 November 2019

This Sandbox is Reserved from September 14, 2021, through May 31, 2022, for use in the class Introduction to Biochemistry taught by User:John Means at the University of Rio Grande, Rio Grande, OH, USA. This reservation includes 5 reserved sandboxes (Sandbox Reserved 1590 through Sandbox Reserved 1594).
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • Click the 3D button (when editing, above the wikitext box) to insert Jmol.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing. For an example of a student Proteopedia page, please see Photosystem II, Tetanospasmin, or Guanine riboswitch.

Leadzyme Structure

Leadzyme Structure

Drag the structure with the mouse to rotate

References

  1. Barciszewska MZ, Szymanski M, Wyszko E, Pas J, Rychlewski L, Barciszewski J. Lead toxicity through the leadzyme. Mutat Res. 2005 Mar;589(2):103-10. doi: 10.1016/j.mrrev.2004.11.002. Epub 2004, Dec 23. PMID:15795164 doi:http://dx.doi.org/10.1016/j.mrrev.2004.11.002
  2. Klotz K, Goen T. Human Biomonitoring of Lead Exposure. Met Ions Life Sci. 2017 Apr 10;17. pii:, /books/9783110434330/9783110434330-006/9783110434330-006.xml. doi:, 10.1515/9783110434330-006. PMID:28731299 doi:http://dx.doi.org/10.1515/9783110434330-006
  3. 3.0 3.1 3.2 3.3 3.4 3.5 Hoogstraten CG, Legault P, Pardi A. NMR solution structure of the lead-dependent ribozyme: evidence for dynamics in RNA catalysis. J Mol Biol. 1998 Nov 27;284(2):337-50. PMID:9813122 doi:S0022-2836(98)92182-9
  4. 4.0 4.1 Qi X, Xia T. Structure, dynamics, and mechanism of the lead-dependent ribozyme. Biomol Concepts. 2011 Aug 1;2(4):305-14. doi: 10.1515/bmc.2011.029. PMID:25962038 doi:http://dx.doi.org/10.1515/bmc.2011.029
Personal tools