Sandbox Reserved 1581
From Proteopedia
(Difference between revisions)
| Line 14: | Line 14: | ||
The reason for this is because TPP is a form of vitamin B1, and vitamin B1 takes an essential part in many protein-catalyzed reactions; thus it is used quite often. | The reason for this is because TPP is a form of vitamin B1, and vitamin B1 takes an essential part in many protein-catalyzed reactions; thus it is used quite often. | ||
| - | Magnesium Link <scene name='82/824626/Ahhh/2'>G60 and G78</scene> PAPER CITATION: <ref>PMID:16728979</ref> | + | Magnesium Link <scene name='82/824626/Ahhh/2'>G60 and G78</scene> |
| + | |||
| + | PAPER CITATION: <ref>PMID:16728979</ref> | ||
TPP Link <scene name='82/824626/Tpp/1'>Mg1 and Mg2</scene> | TPP Link <scene name='82/824626/Tpp/1'>Mg1 and Mg2</scene> | ||
| Line 20: | Line 22: | ||
== Disease == | == Disease == | ||
| + | |||
== Relevance == | == Relevance == | ||
== Structural highlights == | == Structural highlights == | ||
| + | TPP riboswitches were one of the first of several classes found to form successful bonds with negatively charged phosphate groups.<ref>PMID:16728979</ref> | ||
| + | TPP's pyrophosphate group is bound by a pair of Mg2+ ions, <scene name='82/824626/Tpp/1'>Mg1 and Mg2</scene> . | ||
| + | |||
This is a sample scene created with SAT to <scene name="/12/3456/Sample/1">color</scene> by Group, and another to make <scene name="/12/3456/Sample/2">a transparent representation</scene> of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes. | This is a sample scene created with SAT to <scene name="/12/3456/Sample/1">color</scene> by Group, and another to make <scene name="/12/3456/Sample/2">a transparent representation</scene> of the protein. You can make your own scenes on SAT starting from scratch or loading and editing one of these sample scenes. | ||
Revision as of 14:43, 19 November 2019
| This Sandbox is Reserved from September 14, 2021, through May 31, 2022, for use in the class Introduction to Biochemistry taught by User:John Means at the University of Rio Grande, Rio Grande, OH, USA. This reservation includes 5 reserved sandboxes (Sandbox Reserved 1590 through Sandbox Reserved 1594). |
To get started:
More help: Help:Editing. For an example of a student Proteopedia page, please see Photosystem II, Tetanospasmin, or Guanine riboswitch. |
Your Heading Here (maybe something like 'Structure')
| |||||||||||
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Serganov A, Polonskaia A, Phan AT, Breaker RR, Patel DJ. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature. 2006 Jun 29;441(7097):1167-71. Epub 2006 May 21. PMID:16728979 doi:http://dx.doi.org/nature04740
- ↑ Serganov A, Polonskaia A, Phan AT, Breaker RR, Patel DJ. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature. 2006 Jun 29;441(7097):1167-71. Epub 2006 May 21. PMID:16728979 doi:http://dx.doi.org/nature04740
- ↑ Serganov A, Polonskaia A, Phan AT, Breaker RR, Patel DJ. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature. 2006 Jun 29;441(7097):1167-71. Epub 2006 May 21. PMID:16728979 doi:http://dx.doi.org/nature04740
- ↑ Serganov A, Polonskaia A, Phan AT, Breaker RR, Patel DJ. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature. 2006 Jun 29;441(7097):1167-71. Epub 2006 May 21. PMID:16728979 doi:http://dx.doi.org/nature04740
- ↑ Serganov A, Polonskaia A, Phan AT, Breaker RR, Patel DJ. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature. 2006 Jun 29;441(7097):1167-71. Epub 2006 May 21. PMID:16728979 doi:http://dx.doi.org/nature04740
- ↑ Serganov A, Polonskaia A, Phan AT, Breaker RR, Patel DJ. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature. 2006 Jun 29;441(7097):1167-71. Epub 2006 May 21. PMID:16728979 doi:http://dx.doi.org/nature04740
- ↑ Serganov A, Polonskaia A, Phan AT, Breaker RR, Patel DJ. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature. 2006 Jun 29;441(7097):1167-71. Epub 2006 May 21. PMID:16728979 doi:http://dx.doi.org/nature04740
- ↑ Serganov A, Polonskaia A, Phan AT, Breaker RR, Patel DJ. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature. 2006 Jun 29;441(7097):1167-71. Epub 2006 May 21. PMID:16728979 doi:http://dx.doi.org/nature04740
- ↑ Serganov A, Polonskaia A, Phan AT, Breaker RR, Patel DJ. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch. Nature. 2006 Jun 29;441(7097):1167-71. Epub 2006 May 21. PMID:16728979 doi:http://dx.doi.org/nature04740
