|
|
Line 3: |
Line 3: |
| <StructureSection load='5v7f' size='340' side='right'caption='[[5v7f]], [[Resolution|resolution]] 1.65Å' scene=''> | | <StructureSection load='5v7f' size='340' side='right'caption='[[5v7f]], [[Resolution|resolution]] 1.65Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5v7f]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Bpt4 Bpt4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5V7F OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5V7F FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5v7f]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Escherichia_virus_T4 Escherichia virus T4]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5V7F OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5V7F FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=HED:2-HYDROXYETHYL+DISULFIDE'>HED</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.65Å</td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=IYR:3-IODO-TYROSINE'>IYR</scene></td></tr>
| + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=HED:2-HYDROXYETHYL+DISULFIDE'>HED</scene>, <scene name='pdbligand=IYR:3-IODO-TYROSINE'>IYR</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5v7d|5v7d]], [[5v7e|5v7e]]</td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5v7f FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5v7f OCA], [https://pdbe.org/5v7f PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5v7f RCSB], [https://www.ebi.ac.uk/pdbsum/5v7f PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5v7f ProSAT]</span></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">e, T4Tp126 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10665 BPT4])</td></tr>
| + | |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Lysozyme Lysozyme], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=3.2.1.17 3.2.1.17] </span></td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5v7f FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5v7f OCA], [http://pdbe.org/5v7f PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5v7f RCSB], [http://www.ebi.ac.uk/pdbsum/5v7f PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5v7f ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| + | == Function == |
| + | [https://www.uniprot.org/uniprot/ENLYS_BPT4 ENLYS_BPT4] Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.<ref>PMID:22389108</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 27: |
Line 26: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Bpt4]] | + | [[Category: Escherichia virus T4]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Lysozyme]]
| + | [[Category: Carlsson A-CC]] |
- | [[Category: Carlsson, A C.C]] | + | |
- | [[Category: Halogen bond]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Protein engineering]]
| + | |
- | [[Category: T4 lysozyme]]
| + | |
- | [[Category: Unnatural amino acid]]
| + | |
| Structural highlights
Function
ENLYS_BPT4 Endolysin with lysozyme activity that degrades host peptidoglycans and participates with the holin and spanin proteins in the sequential events which lead to the programmed host cell lysis releasing the mature viral particles. Once the holin has permeabilized the host cell membrane, the endolysin can reach the periplasm and break down the peptidoglycan layer.[1]
Publication Abstract from PubMed
The construction of more stable proteins is important in biomolecular engineering, particularly in the design of biologics-based therapeutics. We show here that replacing the tyrosine at position 18 (Y18) of T4 lysozyme with the unnatural amino acid m-chlorotyrosine ( (mCl)Y) increases both the thermal stability (increasing the melting temperature by approximately 1 degrees C and the melting enthalpy by 3 kcal/mol) and the enzymatic activity at elevated temperatures (15% higher than that of the parent enzyme at 40 degrees C) of this classic enzyme. The chlorine of (mCl)Y forms a halogen bond (XB) to the carbonyl oxygen of the peptide bond at glycine 28 (G28) in a tight loop near the active site. In this case, the XB potential of the typically weak XB donor Cl is shown from quantum chemical calculations to be significantly enhanced by polarization via an intramolecular hydrogen bond (HB) from the adjacent hydroxyl substituent of the tyrosyl side chain, resulting in a distinctive synergistic HB-enhanced XB (or HeX-B for short) interaction. The larger halogens (bromine and iodine) are not well accommodated within this same loop and, consequently, do not exhibit the effects on protein stability or function associated with the HeX-B interaction. Thus, we have for the first time demonstrated that an XB can be engineered to stabilize and increase the activity of an enzyme, with the increased stabilizing potential of the HeX-B further extending the application of halogenated amino acids in the design of more stable protein therapeutics.
Increasing Enzyme Stability and Activity through Hydrogen Bond-Enhanced Halogen Bonds.,Carlsson AC, Scholfield MR, Rowe RK, Ford MC, Alexander AT, Mehl RA, Ho PS Biochemistry. 2018 Jul 3. doi: 10.1021/acs.biochem.8b00603. PMID:29921126[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Moussa SH, Kuznetsov V, Tran TA, Sacchettini JC, Young R. Protein determinants of phage T4 lysis inhibition. Protein Sci. 2012 Apr;21(4):571-82. doi: 10.1002/pro.2042. Epub 2012 Mar 2. PMID:22389108 doi:http://dx.doi.org/10.1002/pro.2042
- ↑ Carlsson AC, Scholfield MR, Rowe RK, Ford MC, Alexander AT, Mehl RA, Ho PS. Increasing Enzyme Stability and Activity through Hydrogen Bond-Enhanced Halogen Bonds. Biochemistry. 2018 Jul 3. doi: 10.1021/acs.biochem.8b00603. PMID:29921126 doi:http://dx.doi.org/10.1021/acs.biochem.8b00603
|