Neurotransmitters

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 80: Line 80:
Currently, treatment for the disease is aimed at DOPA decarboxylase inhibition. Since dopamine cannot cross the blood-brain barrier, it cannot be used to directly treat Parkinson's disease. Thus, exogenously administered L-DOPA is the primary treatment for patients suffering from this neurodegenerative disease. Unfortunately, DOPA decarboxylase rapidly converts L-DOPA to dopamine in the blood stream, with only a small percentage reaching the brain. By inhibiting the enzyme, greater amounts of exogenously administered L-DOPA can reach the brain, where it can then be converted to dopamine. <ref name="burkhard">PMID:11685243 </ref>. Unfortunately, with continued L-Dopa treatment, up to 80% of patients experience 'wearing-off' symptoms, dyskinesias and other motor complications (referred to as the "on-off phenomenon". <ref name="lees">PMID:1904055 </ref>. Clearly, a better understanding of the catalytic mechanism and enzymatic activity of DDC in both healthy and PD individuals is critical to drug design and treatment of the disease.
Currently, treatment for the disease is aimed at DOPA decarboxylase inhibition. Since dopamine cannot cross the blood-brain barrier, it cannot be used to directly treat Parkinson's disease. Thus, exogenously administered L-DOPA is the primary treatment for patients suffering from this neurodegenerative disease. Unfortunately, DOPA decarboxylase rapidly converts L-DOPA to dopamine in the blood stream, with only a small percentage reaching the brain. By inhibiting the enzyme, greater amounts of exogenously administered L-DOPA can reach the brain, where it can then be converted to dopamine. <ref name="burkhard">PMID:11685243 </ref>. Unfortunately, with continued L-Dopa treatment, up to 80% of patients experience 'wearing-off' symptoms, dyskinesias and other motor complications (referred to as the "on-off phenomenon". <ref name="lees">PMID:1904055 </ref>. Clearly, a better understanding of the catalytic mechanism and enzymatic activity of DDC in both healthy and PD individuals is critical to drug design and treatment of the disease.
- 
-
=Serotonin=
 
-
==Serotonin receptors==
 
-
===[[5-hydroxytryptamine receptor|Serotonin receptors, main page]]===
 
-
===[[5-hydroxytryptamine receptor 3D structures|3D structures of Serotonin receptors]]===
 
-
===[[5-ht3a receptor|5-HT3A receptor]]===
 
-
==[[Serotonin Transporter]]==
 
-
==See also [[Serotonin N-acetyltransferase]]==
 
=Glutamate=
=Glutamate=
Line 111: Line 103:
==Histamine receptors==
==Histamine receptors==
[[Histamine H1 receptor]]
[[Histamine H1 receptor]]
 +
 +
=Serotonin=
 +
==Serotonin receptors==
 +
===[[5-hydroxytryptamine receptor|Serotonin receptors, main page]]===
 +
===[[5-hydroxytryptamine receptor 3D structures|3D structures of Serotonin receptors]]===
 +
===[[5-ht3a receptor|5-HT3A receptor]]===
 +
==[[Serotonin Transporter]]==
 +
==See also [[Serotonin N-acetyltransferase]]==
</StructureSection>
</StructureSection>

Revision as of 07:16, 28 November 2019

Under construction!!!

Drag the structure with the mouse to rotate

References

  1. Martin JL, Begun J, McLeish MJ, Caine JM, Grunewald GL. Getting the adrenaline going: crystal structure of the adrenaline-synthesizing enzyme PNMT. Structure. 2001 Oct;9(10):977-85. PMID:11591352
  2. Jones S, Kornblum JL, Kauer JA (August 2000). "Amphetamine blocks long-term synaptic depression in the ventral tegmental area". J. Neurosci. 20 (15): 5575–80. PMID 10908593. http://www.jneurosci.org/cgi/pmidlookup?view=long&pmid=10908593.
  3. Cruickshank, CC.; Dyer, KR. (Jul 2009). "A review of the clinical pharmacology of methamphetamine.". Addiction 104 (7): 1085–99. doi:10.1111/j.1360-0443.2009.02564.x. PMID 19426289.
  4. Cuena Boy R, Maciá Martínez MA (1998). "[Extrapyramidal toxicity caused by metoclopramide and clebopride: study of voluntary notifications of adverse effects to the Spanish Drug Surveillance System]" (in Spanish). Atencion Primaria 21 (5): 289–95. PMID 9608114. Free full text
  5. Pilla M, Perachon S, Sautel F, Garrido F, Mann A, Wermuth CG, Schwartz JC, Everitt BJ, Sokoloff P. Selective inhibition of cocaine-seeking behaviour by a partial dopamine D3 agonist. Nature. 1999;400:371–375.
  6. Miles EW. The tryptophan synthase alpha 2 beta 2 complex. Cleavage of a flexible loop in the alpha subunit alters allosteric properties. J Biol Chem. 1991 Jun 15;266(17):10715-8. PMID:1904055
  7. Burkhard P, Dominici P, Borri-Voltattorni C, Jansonius JN, Malashkevich VN. Structural insight into Parkinson's disease treatment from drug-inhibited DOPA decarboxylase. Nat Struct Biol. 2001 Nov;8(11):963-7. PMID:11685243 doi:http://dx.doi.org/10.1038/nsb1101-963
  8. Miles EW. The tryptophan synthase alpha 2 beta 2 complex. Cleavage of a flexible loop in the alpha subunit alters allosteric properties. J Biol Chem. 1991 Jun 15;266(17):10715-8. PMID:1904055
  9. 9.0 9.1 Jin R, Clark S, Weeks AM, Dudman JT, Gouaux E, Partin KM. Mechanism of positive allosteric modulators acting on AMPA receptors. J Neurosci. 2005 Sep 28;25(39):9027-36. PMID:16192394 doi:25/39/9027
  10. Sobolevsky AI, Rosconi MP, Gouaux E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor. Nature. 2009 Dec 10;462(7274):745-56. Epub . PMID:19946266 doi:10.1038/nature08624
  11. Traynelis SF, Wollmuth LP, McBain CJ, Menniti FS, Vance KM, Ogden KK, Hansen KB, Yuan H, Myers SJ, Dingledine R. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev. 2010 Sep;62(3):405-96. doi: 10.1124/pr.109.002451. PMID:20716669 doi:http://dx.doi.org/10.1124/pr.109.002451

Proteopedia Page Contributors and Editors (what is this?)

Alexander Berchansky

Personal tools