Sandbox Reserved 1569
From Proteopedia
(Difference between revisions)
Line 13: | Line 13: | ||
When looking at the (secondary structure) of Bap1, the two different sized domains are easily seen. The larger domain of the protein is the 8-bladed β-propeller region. The smaller domain of the protein is a β-prism that is connected to the propeller region via a loop in between blade 6. When zooming in on what connects them, it is just two small strands. This makes the protein very flexible. | When looking at the (secondary structure) of Bap1, the two different sized domains are easily seen. The larger domain of the protein is the 8-bladed β-propeller region. The smaller domain of the protein is a β-prism that is connected to the propeller region via a loop in between blade 6. When zooming in on what connects them, it is just two small strands. This makes the protein very flexible. | ||
When looking at a space-fill view of Bap1 and colored based on hydrophobicity, one can easily identify the binding pocket that carbohydrates bind to in the β-prism. Bap1 is known for its sugar binding properties. | When looking at a space-fill view of Bap1 and colored based on hydrophobicity, one can easily identify the binding pocket that carbohydrates bind to in the β-prism. Bap1 is known for its sugar binding properties. | ||
+ | |||
+ | It is important to note that this protein did not have a catalytic triad mentioned in the paper. Instead, highlighting the key amino acids that are important to the function of Bap1 should be mentioned. These amino acids are Gly 344, Ala 345, Val 346, Lys 501, Asp 348, and His 500. | ||
== Energy Transformation == | == Energy Transformation == | ||
Revision as of 02:16, 1 December 2019
This Sandbox is Reserved from Aug 26 through Dec 12, 2019 for use in the course CHEM 351 Biochemistry taught by Bonnie_Hall at the Grand View University, Des Moines, USA. This reservation includes Sandbox Reserved 1556 through Sandbox Reserved 1575. |
To get started:
More help: Help:Editing |
Bap1
|
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
<https://www.cdc.gov/cholera/general/index.html/> <https://learn-us-east-1-prod-fleet01-xythos.s3.us-east-1.amazonaws.com/5b158bd279e57/1084854?response-content-disposition=inline%3B%20filename%2A%3DUTF-8%27%27J.%2520Biol.%2520Chem.-2019-Kaus-14499-511%2520Bap1%2520and%2520Biofilms.pdf&response-content-type=application%2Fpdf&X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Date=20191129T222123Z&X-Amz-SignedHeaders=host&X-Amz-Expires=21599&X-Amz-Credential=AKIAIBGJ7RCS23L3LEJQ%2F20191129%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Signature=ed78695b2e7f71eacab1d648cabfd0bdc32d25d4c7e7baa05f136386ac3844b6/> [1]