|
|
Line 3: |
Line 3: |
| <StructureSection load='5jbt' size='340' side='right'caption='[[5jbt]], [[Resolution|resolution]] 1.40Å' scene=''> | | <StructureSection load='5jbt' size='340' side='right'caption='[[5jbt]], [[Resolution|resolution]] 1.40Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5jbt]] is a 3 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5JBT OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5JBT FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5jbt]] is a 3 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5JBT OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5JBT FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 1.4Å</td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">PRSS3 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN]), APLP2, APPL2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5jbt FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5jbt OCA], [http://pdbe.org/5jbt PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5jbt RCSB], [http://www.ebi.ac.uk/pdbsum/5jbt PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5jbt ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5jbt FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5jbt OCA], [https://pdbe.org/5jbt PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5jbt RCSB], [https://www.ebi.ac.uk/pdbsum/5jbt PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5jbt ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/APLP2_HUMAN APLP2_HUMAN]] May play a role in the regulation of hemostasis. The soluble form may have inhibitory properties towards coagulation factors. May interact with cellular G-protein signaling pathways. May bind to the DNA 5'-GTCACATG-3'(CDEI box). Inhibits trypsin, chymotrypsin, plasmin, factor XIA and plasma and glandular kallikrein. Modulates the Cu/Zn nitric oxide-catalyzed autodegradation of GPC1 heparan sulfate side chains in fibroblasts (By similarity).<ref>PMID:8307156</ref> | + | [https://www.uniprot.org/uniprot/TRY3_HUMAN TRY3_HUMAN] Digestive protease specialized for the degradation of trypsin inhibitors. In the ileum, may be involved in defensin processing, including DEFA5.<ref>PMID:12021776</ref> <ref>PMID:14507909</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 21: |
Line 21: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Trypsin|Trypsin]] | + | *[[Trypsin 3D structures|Trypsin 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Kayode, O]] | + | [[Category: Kayode O]] |
- | [[Category: Pendlebury, D]] | + | [[Category: Pendlebury D]] |
- | [[Category: Radisky, E S]] | + | [[Category: Radisky ES]] |
- | [[Category: Soares, A]] | + | [[Category: Soares A]] |
- | [[Category: Wang, R]] | + | [[Category: Wang R]] |
- | [[Category: Hydrolase-hydrolase inhibitor complex]]
| + | |
- | [[Category: Inhibitor protease serine]]
| + | |
| Structural highlights
Function
TRY3_HUMAN Digestive protease specialized for the degradation of trypsin inhibitors. In the ileum, may be involved in defensin processing, including DEFA5.[1] [2]
Publication Abstract from PubMed
The molecular basis of enzyme catalytic power and specificity derives from dynamic interactions between enzyme and substrate during catalysis. While considerable effort has been devoted to understanding how conformational dynamics within enzymes affect catalysis, the role of conformational dynamics within protein substrates has not been addressed. Here we examine the importance of substrate dynamics in the cleavage of Kunitz-BPTI protease inhibitors by mesotrypsin, finding that the varied conformational dynamics of structurally similar substrates can profoundly impact the rate of catalysis. A 1.4 A crystal structure of a mesotrypsin-product complex formed with a rapidly cleaved substrate reveals a dramatic conformational change in the substrate upon proteolysis. Using long all-atom molecular dynamics simulations of acyl-enzyme intermediates with proteolysis rates spanning three orders of magnitude, we identify global and local dynamic features of substrates on the ns-mus timescale that correlate with enzymatic rates and explain differential susceptibility to proteolysis. By integrating multiple enhanced sampling methods for molecular dynamics, we model a viable conformational pathway between substrate-like and product-like states, linking substrate dynamics on the ns-mus timescale with large collective substrate motions on the much slower timescale of catalysis. Our findings implicate substrate flexibility as a critical determinant of catalysis.
An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis.,Kayode O, Wang R, Pendlebury DF, Cohen I, Henin RD, Hockla A, Soares AS, Papo N, Caulfield TR, Radisky ES J Biol Chem. 2016 Nov 3. pii: jbc.M116.758417. PMID:27810896[3]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Ghosh D, Porter E, Shen B, Lee SK, Wilk D, Drazba J, Yadav SP, Crabb JW, Ganz T, Bevins CL. Paneth cell trypsin is the processing enzyme for human defensin-5. Nat Immunol. 2002 Jun;3(6):583-90. Epub 2002 May 20. PMID:12021776 doi:10.1038/ni797
- ↑ Szmola R, Kukor Z, Sahin-Toth M. Human mesotrypsin is a unique digestive protease specialized for the degradation of trypsin inhibitors. J Biol Chem. 2003 Dec 5;278(49):48580-9. Epub 2003 Sep 24. PMID:14507909 doi:10.1074/jbc.M310301200
- ↑ Kayode O, Wang R, Pendlebury DF, Cohen I, Henin RD, Hockla A, Soares AS, Papo N, Caulfield TR, Radisky ES. An Acrobatic Substrate Metamorphosis Reveals a Requirement for Substrate Conformational Dynamics in Trypsin Proteolysis. J Biol Chem. 2016 Nov 3. pii: jbc.M116.758417. PMID:27810896 doi:http://dx.doi.org/10.1074/jbc.M116.758417
|