Sandbox Reserved 1565
From Proteopedia
(Difference between revisions)
| Line 14: | Line 14: | ||
== Structural Highlights and Structure-Function Relationships == | == Structural Highlights and Structure-Function Relationships == | ||
| - | The <scene name='82/823089/Secondary_structure/1'>secondary structure</scene> shows alpha helices and beta sheets. The ''Ashbya gossypii'' IMPDH is 31% helical and 15% beta sheet, | + | The <scene name='82/823089/Secondary_structure/1'>secondary structure</scene> shows alpha helices and beta sheets. The ''Ashbya gossypii'' IMPDH is 31% helical and 15% beta sheet, with the other percentages including random coils and residue structures. The active site is located towards the C-terminus within the TIM barrel, containing 8 alpha-helices and 8 beta sheets. |
IMPDH <scene name='82/823087/Impdh_quaternary_structure/1'>quaternary structures</scene> include multiunit complexes, such as tetramers, extended octamers, and compacted octamers. These quaternary structures are created through the binding of multiple subunits of tertiary structures, that are strengthened and structurally formed through hydrogen-bonding, Cysteine-Cysteine disulfide bonds, and hydrophobic interactions. Different quaternary forms of IMPDH relate to the kinetic favorability of the IMPDH mechanism as Bateman domain allosteric binding sites and competitive nature changes with unit composition. | IMPDH <scene name='82/823087/Impdh_quaternary_structure/1'>quaternary structures</scene> include multiunit complexes, such as tetramers, extended octamers, and compacted octamers. These quaternary structures are created through the binding of multiple subunits of tertiary structures, that are strengthened and structurally formed through hydrogen-bonding, Cysteine-Cysteine disulfide bonds, and hydrophobic interactions. Different quaternary forms of IMPDH relate to the kinetic favorability of the IMPDH mechanism as Bateman domain allosteric binding sites and competitive nature changes with unit composition. | ||
Revision as of 23:32, 7 December 2019
| This Sandbox is Reserved from Aug 26 through Dec 12, 2019 for use in the course CHEM 351 Biochemistry taught by Bonnie_Hall at the Grand View University, Des Moines, USA. This reservation includes Sandbox Reserved 1556 through Sandbox Reserved 1575. |
To get started:
More help: Help:Editing |
Inosine-5'-monophosphate dehydrogenase
| |||||||||||
References
- ↑ Fernandez-Justel D, Pelaez R, Revuelta JL, Buey RM. The Bateman domain of IMP dehydrogenase is a binding target for dinucleoside polyphosphates. J Biol Chem. 2019 Aug 15. pii: AC119.010055. doi: 10.1074/jbc.AC119.010055. PMID:31416831 doi:http://dx.doi.org/10.1074/jbc.AC119.010055
- ↑ Fernandez-Justel D, Pelaez R, Revuelta JL, Buey RM. The Bateman domain of IMP dehydrogenase is a binding target for dinucleoside polyphosphates. J Biol Chem. 2019 Aug 15. pii: AC119.010055. doi: 10.1074/jbc.AC119.010055. PMID:31416831 doi:http://dx.doi.org/10.1074/jbc.AC119.010055
- ↑ Fernandez-Justel D, Pelaez R, Revuelta JL, Buey RM. The Bateman domain of IMP dehydrogenase is a binding target for dinucleoside polyphosphates. J Biol Chem. 2019 Aug 15. pii: AC119.010055. doi: 10.1074/jbc.AC119.010055. PMID:31416831 doi:http://dx.doi.org/10.1074/jbc.AC119.010055
- ↑ Hedstrom L, Liechti G, Goldberg JB, Gollapalli DR. The antibiotic potential of prokaryotic IMP dehydrogenase inhibitors. Curr Med Chem. 2011;18(13):1909-18. doi: 10.2174/092986711795590129. PMID:21517780 doi:http://dx.doi.org/10.2174/092986711795590129
- ↑ Bairagya HR, Mukhopadhyay BP. An insight to the dynamics of conserved water-mediated salt bridge interaction and interdomain recognition in hIMPDH isoforms. J Biomol Struct Dyn. 2012 Aug 28. PMID:22928911 doi:10.1080/07391102.2012.712458
- ↑ Wang W, Papov VV, Minakawa N, Matsuda A, Biemann K, Hedstrom L. Inactivation of inosine 5'-monophosphate dehydrogenase by the antiviral agent 5-ethynyl-1-beta-D-ribofuranosylimidazole-4-carboxamide 5'-monophosphate. Biochemistry. 1996 Jan 9;35(1):95-101. doi: 10.1021/bi951499q. PMID:8555204 doi:http://dx.doi.org/10.1021/bi951499q
- ↑ Hedstrom L. IMP dehydrogenase: mechanism of action and inhibition. Curr Med Chem. 1999 Jul;6(7):545-60. PMID:10390600
- ↑ Fernandez-Justel D, Pelaez R, Revuelta JL, Buey RM. The Bateman domain of IMP dehydrogenase is a binding target for dinucleoside polyphosphates. J Biol Chem. 2019 Aug 15. pii: AC119.010055. doi: 10.1074/jbc.AC119.010055. PMID:31416831 doi:http://dx.doi.org/10.1074/jbc.AC119.010055
- ↑ Fernandez-Justel D, Pelaez R, Revuelta JL, Buey RM. The Bateman domain of IMP dehydrogenase is a binding target for dinucleoside polyphosphates. J Biol Chem. 2019 Aug 15. pii: AC119.010055. doi: 10.1074/jbc.AC119.010055. PMID:31416831 doi:http://dx.doi.org/10.1074/jbc.AC119.010055
