|
|
Line 3: |
Line 3: |
| <StructureSection load='5fft' size='340' side='right'caption='[[5fft]], [[Resolution|resolution]] 2.20Å' scene=''> | | <StructureSection load='5fft' size='340' side='right'caption='[[5fft]], [[Resolution|resolution]] 2.20Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[5fft]] is a 1 chain structure with sequence from [http://en.wikipedia.org/wiki/Buffalo_rat Buffalo rat]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5FFT OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5FFT FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[5fft]] is a 1 chain structure with sequence from [https://en.wikipedia.org/wiki/Rattus_norvegicus Rattus norvegicus]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=5FFT OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=5FFT FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene></td></tr> | + | </td></tr><tr id='method'><td class="sblockLbl"><b>[[Empirical_models|Method:]]</b></td><td class="sblockDat" id="methodDat">X-ray diffraction, [[Resolution|Resolution]] 2.2Å</td></tr> |
- | <tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=SME:METHIONINE+SULFOXIDE'>SME</scene></td></tr> | + | <tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=CA:CALCIUM+ION'>CA</scene>, <scene name='pdbligand=SME:METHIONINE+SULFOXIDE'>SME</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[5ffr|5ffr]], [[5ffs|5ffs]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=5fft FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5fft OCA], [https://pdbe.org/5fft PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=5fft RCSB], [https://www.ebi.ac.uk/pdbsum/5fft PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=5fft ProSAT]</span></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">Sftpa1, Sftp-1, Sftp1, Sftpa ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=10116 Buffalo rat])</td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=5fft FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=5fft OCA], [http://pdbe.org/5fft PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=5fft RCSB], [http://www.ebi.ac.uk/pdbsum/5fft PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=5fft ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/SFTPA_RAT SFTPA_RAT]] In presence of calcium ions, it binds to surfactant phospholipids and contributes to lower the surface tension at the air-liquid interface in the alveoli of the mammalian lung and is essential for normal respiration. | + | [https://www.uniprot.org/uniprot/SFTPA_RAT SFTPA_RAT] In presence of calcium ions, it binds to surfactant phospholipids and contributes to lower the surface tension at the air-liquid interface in the alveoli of the mammalian lung and is essential for normal respiration. |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 25: |
Line 23: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Buffalo rat]] | |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Goh, B C]] | + | [[Category: Rattus norvegicus]] |
- | [[Category: McCormack, F X]] | + | [[Category: Goh BC]] |
- | [[Category: Rynkiewicz, M J]] | + | [[Category: McCormack FX]] |
- | [[Category: Schulten, K]] | + | [[Category: Rynkiewicz MJ]] |
- | [[Category: Seaton, B A]] | + | [[Category: Schulten K]] |
- | [[Category: Wu, H]] | + | [[Category: Seaton BA]] |
- | [[Category: Carbohydrate binding]]
| + | [[Category: Wu H]] |
- | [[Category: Collectin]]
| + | |
- | [[Category: Lectin]]
| + | |
- | [[Category: Lipid binding]]
| + | |
- | [[Category: Sugar binding protein]]
| + | |
| Structural highlights
Function
SFTPA_RAT In presence of calcium ions, it binds to surfactant phospholipids and contributes to lower the surface tension at the air-liquid interface in the alveoli of the mammalian lung and is essential for normal respiration.
Publication Abstract from PubMed
Surfactant protein A (SP-A) is a collagenous C-type lectin (collectin) that is critical for pulmonary defense against inhaled microorganisms. Bifunctional avidity of SP-A for pathogen-associated molecular patterns (PAMPs) such as lipid A and for dipalmitoylphosphatidylcholine (DPPC), the major component of surfactant membranes lining the air-liquid interface of the lung, ensures that the protein is poised for first-line interactions with inhaled pathogens. To improve our understanding of the motifs that are required for interactions with microbes and surfactant structures, we explored the role of the tyrosine-rich binding surface on the carbohydrate recognition domain of SP-A in the interaction with DPPC and lipid A using crystallography, site-directed mutagenesis, and molecular dynamics simulations. Critical binding features for DPPC binding include a three-walled tyrosine cage that binds the choline headgroup through cation-pi interactions and a positively charged cluster that binds the phosphoryl group. This basic cluster is also critical for binding of lipid A, a bacterial PAMP and target for SP-A. Molecular dynamics simulations further predict that SP-A binds lipid A more tightly than DPPC. These results suggest that the differential binding properties of SP-A favor transfer of the protein from surfactant DPPC to pathogen membranes containing appropriate lipid PAMPs to effect key host defense functions.
Elucidation of Lipid Binding Sites on Lung Surfactant Protein A Using X-ray Crystallography, Mutagenesis, and Molecular Dynamics Simulations.,Goh BC, Wu H, Rynkiewicz MJ, Schulten K, Seaton BA, McCormack FX Biochemistry. 2016 Jul 5;55(26):3692-701. doi: 10.1021/acs.biochem.6b00048. Epub , 2016 Jun 21. PMID:27324153[1]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
References
- ↑ Goh BC, Wu H, Rynkiewicz MJ, Schulten K, Seaton BA, McCormack FX. Elucidation of Lipid Binding Sites on Lung Surfactant Protein A Using X-ray Crystallography, Mutagenesis, and Molecular Dynamics Simulations. Biochemistry. 2016 Jul 5;55(26):3692-701. doi: 10.1021/acs.biochem.6b00048. Epub , 2016 Jun 21. PMID:27324153 doi:http://dx.doi.org/10.1021/acs.biochem.6b00048
|