<table><tr><td colspan='2'>[[6gdg]] is a 5 chain structure with sequence from [http://en.wikipedia.org/wiki/Camelus_glama Camelus glama] and [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6GDG OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6GDG FirstGlance]. <br>
<table><tr><td colspan='2'>[[6gdg]] is a 5 chain structure with sequence from [http://en.wikipedia.org/wiki/Camelus_glama Camelus glama] and [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6GDG OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6GDG FirstGlance]. <br>
Line 24:
Line 24:
==See Also==
==See Also==
*[[Adenosine A2A receptor 3D structures|Adenosine A2A receptor 3D structures]]
*[[Adenosine A2A receptor 3D structures|Adenosine A2A receptor 3D structures]]
+
*[[Transducin 3D structures|Transducin 3D structures]]
== References ==
== References ==
<references/>
<references/>
__TOC__
__TOC__
-
</StructureSection>
+
</SX>
[[Category: Camelus glama]]
[[Category: Camelus glama]]
[[Category: Human]]
[[Category: Human]]
Revision as of 21:30, 6 March 2020
Cryo-EM structure of the adenosine A2A receptor bound to a miniGs heterotrimer
6gdg is a 5 chain structure with sequence from Camelus glama and Human. Full crystallographic information is available from OCA. For a guided tour on the structure components use FirstGlance.
[GNAS2_HUMAN] Pseudopseudohypoparathyroidism;Pseudohypoparathyroidism type 1A;Progressive osseous heteroplasia;Polyostotic fibrous dysplasia;Monostotic fibrous dysplasia;Pseudohypoparathyroidism type 1C;Pseudohypoparathyroidism type 1B;McCune-Albright syndrome. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry. Most affected individuals have defects in methylation of the gene. In some cases microdeletions involving the STX16 appear to cause loss of methylation at exon A/B of GNAS, resulting in PHP1B. Paternal uniparental isodisomy have also been observed. The disease is caused by mutations affecting the gene represented in this entry. The disease is caused by mutations affecting the gene represented in this entry.
Function
[GNAS2_HUMAN] Guanine nucleotide-binding proteins (G proteins) function as transducers in numerous signaling pathways controlled by G protein-coupled receptors (GPCRs) (PubMed:17110384). Signaling involves the activation of adenylyl cyclases, resulting in increased levels of the signaling molecule cAMP (PubMed:26206488, PubMed:8702665). GNAS functions downstream of several GPCRs, including beta-adrenergic receptors (PubMed:21488135). Stimulates the Ras signaling pathway via RAPGEF2 (PubMed:12391161).[1][2][3][4][5] [GBG2_HUMAN] Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction (By similarity). [GBB1_HUMAN] Guanine nucleotide-binding proteins (G proteins) are involved as a modulator or transducer in various transmembrane signaling systems. The beta and gamma chains are required for the GTPase activity, for replacement of GDP by GTP, and for G protein-effector interaction.[6]
Publication Abstract from PubMed
The adenosine A2A receptor (A2AR) is a prototypical G protein-coupled receptor (GPCR) that couples to the heterotrimeric G protein GS. Here we determine the structure by electron cryo-microscopy (cryo-EM) of A2AR at pH 7.5 bound to the small molecule agonist NECA and coupled to an engineered heterotrimeric G protein, which contains mini-GS, the betagamma subunits and nanobody Nb35. Most regions of the complex have a resolution of ~3.8 A or better. Comparison with the 3.4 A resolution crystal structure shows that the receptor and mini-GS are virtually identical and that the density of the side chains and ligand are of comparable quality. However, the cryo-EM density map also indicates regions that are flexible in comparison to the crystal structures, which unexpectedly includes regions in the ligand binding pocket. In addition, an interaction between intracellular loop 1 of the receptor and the beta subunit of the G protein was observed.
Cryo-EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein.,Garcia-Nafria J, Lee Y, Bai X, Carpenter B, Tate CG Elife. 2018 May 4;7. pii: 35946. doi: 10.7554/eLife.35946. PMID:29726815[7]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
↑ Pak Y, Pham N, Rotin D. Direct binding of the beta1 adrenergic receptor to the cyclic AMP-dependent guanine nucleotide exchange factor CNrasGEF leads to Ras activation. Mol Cell Biol. 2002 Nov;22(22):7942-52. PMID:12391161
↑ Gao X, Sadana R, Dessauer CW, Patel TB. Conditional stimulation of type V and VI adenylyl cyclases by G protein betagamma subunits. J Biol Chem. 2007 Jan 5;282(1):294-302. Epub 2006 Nov 16. PMID:17110384 doi:http://dx.doi.org/10.1074/jbc.M607522200
↑ Thiele S, de Sanctis L, Werner R, Grotzinger J, Aydin C, Juppner H, Bastepe M, Hiort O. Functional characterization of GNAS mutations found in patients with pseudohypoparathyroidism type Ic defines a new subgroup of pseudohypoparathyroidism affecting selectively Gsalpha-receptor interaction. Hum Mutat. 2011 Jun;32(6):653-60. doi: 10.1002/humu.21489. Epub 2011 Apr 12. PMID:21488135 doi:http://dx.doi.org/10.1002/humu.21489
↑ Brand CS, Sadana R, Malik S, Smrcka AV, Dessauer CW. Adenylyl Cyclase 5 Regulation by Gbetagamma Involves Isoform-Specific Use of Multiple Interaction Sites. Mol Pharmacol. 2015 Oct;88(4):758-67. doi: 10.1124/mol.115.099556. Epub 2015 Jul , 23. PMID:26206488 doi:http://dx.doi.org/10.1124/mol.115.099556
↑ Farfel Z, Iiri T, Shapira H, Roitman A, Mouallem M, Bourne HR. Pseudohypoparathyroidism, a novel mutation in the betagamma-contact region of Gsalpha impairs receptor stimulation. J Biol Chem. 1996 Aug 16;271(33):19653-5. PMID:8702665
↑ Johnston CA, Kimple AJ, Giguere PM, Siderovski DP. Structure of the parathyroid hormone receptor C terminus bound to the G-protein dimer Gbeta1gamma2. Structure. 2008 Jul;16(7):1086-94. PMID:18611381 doi:http://dx.doi.org/10.1016/j.str.2008.04.010
↑ Garcia-Nafria J, Lee Y, Bai X, Carpenter B, Tate CG. Cryo-EM structure of the adenosine A2A receptor coupled to an engineered heterotrimeric G protein. Elife. 2018 May 4;7. pii: 35946. doi: 10.7554/eLife.35946. PMID:29726815 doi:http://dx.doi.org/10.7554/eLife.35946