4xzq

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 3: Line 3:
<StructureSection load='4xzq' size='340' side='right'caption='[[4xzq]], [[Resolution|resolution]] 2.40&Aring;' scene=''>
<StructureSection load='4xzq' size='340' side='right'caption='[[4xzq]], [[Resolution|resolution]] 2.40&Aring;' scene=''>
== Structural highlights ==
== Structural highlights ==
-
<table><tr><td colspan='2'>[[4xzq]] is a 10 chain structure with sequence from [http://en.wikipedia.org/wiki/African_clawed_frog African clawed frog]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4XZQ OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4XZQ FirstGlance]. <br>
+
<table><tr><td colspan='2'>[[4xzq]] is a 10 chain structure with sequence from [https://en.wikipedia.org/wiki/African_clawed_frog African clawed frog]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4XZQ OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4XZQ FirstGlance]. <br>
</td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=ALY:N(6)-ACETYLLYSINE'>ALY</scene></td></tr>
</td></tr><tr id='NonStdRes'><td class="sblockLbl"><b>[[Non-Standard_Residue|NonStd Res:]]</b></td><td class="sblockDat"><scene name='pdbligand=ALY:N(6)-ACETYLLYSINE'>ALY</scene></td></tr>
-
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">hist1h2aj, LOC494591 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=8355 African clawed frog])</td></tr>
+
<tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">hist1h2aj, LOC494591 ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=8355 African clawed frog])</td></tr>
-
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4xzq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4xzq OCA], [http://pdbe.org/4xzq PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4xzq RCSB], [http://www.ebi.ac.uk/pdbsum/4xzq PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4xzq ProSAT]</span></td></tr>
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4xzq FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4xzq OCA], [https://pdbe.org/4xzq PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4xzq RCSB], [https://www.ebi.ac.uk/pdbsum/4xzq PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4xzq ProSAT]</span></td></tr>
</table>
</table>
== Function ==
== Function ==
-
[[http://www.uniprot.org/uniprot/H2B11_XENLA H2B11_XENLA]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [[http://www.uniprot.org/uniprot/H32_XENLA H32_XENLA]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [[http://www.uniprot.org/uniprot/H4_XENLA H4_XENLA]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
+
[[https://www.uniprot.org/uniprot/H2B11_XENLA H2B11_XENLA]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [[https://www.uniprot.org/uniprot/H32_XENLA H32_XENLA]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. [[https://www.uniprot.org/uniprot/H4_XENLA H4_XENLA]] Core component of nucleosome. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling.
<div style="background-color:#fffaf0;">
<div style="background-color:#fffaf0;">
== Publication Abstract from PubMed ==
== Publication Abstract from PubMed ==

Revision as of 11:24, 23 March 2022

Nucleosome disassembly by RSC and SWI/SNF is enhanced by H3 acetylation near the nucleosome dyad axis

PDB ID 4xzq

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools