6l7o

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
'''Unreleased structure'''
 
-
The entry 6l7o is ON HOLD until Paper Publication
+
==cryo-EM structure of cyanobacteria Fd-NDH-1L complex==
-
 
+
<StructureSection load='6l7o' size='340' side='right'caption='[[6l7o]], [[Resolution|resolution]] 3.20&Aring;' scene=''>
-
Authors: Zhang, C., Shuai, J., Wu, J., Lei, M.
+
== Structural highlights ==
-
 
+
<table><tr><td colspan='2'>[[6l7o]] is a 20 chain structure with sequence from [http://en.wikipedia.org/wiki/ ] and [http://en.wikipedia.org/wiki/Thermosynechococcus_elongatus_bp-1 Thermosynechococcus elongatus bp-1]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=6L7O OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6L7O FirstGlance]. <br>
-
Description: cryo-EM structure of cyanobacteria Fd-NDH-1L complex
+
</td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=BCR:BETA-CAROTENE'>BCR</scene>, <scene name='pdbligand=DGD:DIGALACTOSYL+DIACYL+GLYCEROL+(DGDG)'>DGD</scene>, <scene name='pdbligand=E7U:(1S,2R,3R,4R,5S,6S,7S,8S,9R,12R,13R,15S,16S,18R)-5,7,9,13-tetramethylspiro[5-oxapentacyclo[10.8.0.0^{2,9}.0^{4,8}.0^{13,18}]icosane-6,2-oxane]-3,15,16-triol'>E7U</scene>, <scene name='pdbligand=FES:FE2/S2+(INORGANIC)+CLUSTER'>FES</scene>, <scene name='pdbligand=LHG:1,2-DIPALMITOYL-PHOSPHATIDYL-GLYCEROLE'>LHG</scene>, <scene name='pdbligand=PQN:PHYLLOQUINONE'>PQN</scene>, <scene name='pdbligand=SF4:IRON/SULFUR+CLUSTER'>SF4</scene>, <scene name='pdbligand=SQD:1,2-DI-O-ACYL-3-O-[6-DEOXY-6-SULFO-ALPHA-D-GLUCOPYRANOSYL]-SN-GLYCEROL'>SQD</scene></td></tr>
-
[[Category: Unreleased Structures]]
+
<tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=6l7o FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=6l7o OCA], [http://pdbe.org/6l7o PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=6l7o RCSB], [http://www.ebi.ac.uk/pdbsum/6l7o PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=6l7o ProSAT]</span></td></tr>
 +
</table>
 +
== Function ==
 +
[[http://www.uniprot.org/uniprot/NDHK_THEEB NDHK_THEEB]] NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. [[http://www.uniprot.org/uniprot/Q8DL30_THEEB Q8DL30_THEEB]] NDH-1 shuttles electrons from NADH, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.[RuleBase:RU004429] [[http://www.uniprot.org/uniprot/NU2C_THEEB NU2C_THEEB]] NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. [[http://www.uniprot.org/uniprot/NU1C_THEEB NU1C_THEEB]] NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient.[HAMAP-Rule:MF_01350] [[http://www.uniprot.org/uniprot/FER_THEEB FER_THEEB]] Ferredoxins are iron-sulfur proteins that transfer electrons in a wide variety of metabolic reactions. [[http://www.uniprot.org/uniprot/NDHM_THEEB NDHM_THEEB]] NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration (By similarity). [[http://www.uniprot.org/uniprot/NU3C_THEEB NU3C_THEEB]] NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration (By similarity). [[http://www.uniprot.org/uniprot/NDHI_THEEB NDHI_THEEB]] NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. [[http://www.uniprot.org/uniprot/NDHL_THEEB NDHL_THEEB]] NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration (By similarity). [[http://www.uniprot.org/uniprot/NDHN_THEEB NDHN_THEEB]] NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration (By similarity). [[http://www.uniprot.org/uniprot/NDHO_THEEB NDHO_THEEB]] NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration (By similarity). [[http://www.uniprot.org/uniprot/NDHH_THEEB NDHH_THEEB]] NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. [[http://www.uniprot.org/uniprot/NU4C1_THEEB NU4C1_THEEB]] NDH-1 shuttles electrons from NAD(P)H, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation (for every two electrons transferred, four hydrogen ions are translocated across the cytoplasmic membrane), and thus conserves the redox energy in a proton gradient.[HAMAP-Rule:MF_00491] [[http://www.uniprot.org/uniprot/NDHJ_THEEB NDHJ_THEEB]] NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration. [[http://www.uniprot.org/uniprot/Q8DL29_THEEB Q8DL29_THEEB]] NDH-1 shuttles electrons from an unknown electron donor, via FMN and iron-sulfur (Fe-S) centers, to quinones in the respiratory and/or the photosynthetic chain. The immediate electron acceptor for the enzyme in this species is believed to be plastoquinone. Couples the redox reaction to proton translocation, and thus conserves the redox energy in a proton gradient. Cyanobacterial NDH-1 also plays a role in inorganic carbon-concentration.[HAMAP-Rule:MF_01456]
 +
__TOC__
 +
</StructureSection>
 +
[[Category: Large Structures]]
 +
[[Category: Thermosynechococcus elongatus bp-1]]
[[Category: Lei, M]]
[[Category: Lei, M]]
 +
[[Category: Shuai, J]]
[[Category: Wu, J]]
[[Category: Wu, J]]
[[Category: Zhang, C]]
[[Category: Zhang, C]]
-
[[Category: Shuai, J]]
+
[[Category: Cyclic electron transfer]]
 +
[[Category: Photosynthesis]]
 +
[[Category: Photosystem i]]

Revision as of 06:22, 19 February 2020

cryo-EM structure of cyanobacteria Fd-NDH-1L complex

PDB ID 6l7o

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

OCA

Personal tools