Sandbox Reserved 1094
From Proteopedia
(Undo revision 3142329 by Loana Prost (Talk)) |
|||
Line 33: | Line 33: | ||
</jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1dpg ConSurf]. | </jmol>, as determined by [http://consurfdb.tau.ac.il/ ConSurfDB]. You may read the [[Conservation%2C_Evolutionary|explanation]] of the method and the full data available from [http://bental.tau.ac.il/new_ConSurfDB/main_output.php?pdb_ID=1dpg ConSurf]. | ||
<div style="clear:both"></div> | <div style="clear:both"></div> | ||
- | <div style="background-color:#fffaf0;"> | ||
== Mutations == | == Mutations == | ||
Line 43: | Line 42: | ||
Depending on several conditions, it can dimerize to form tetramers. Each monomer in the complex has a substrate binding site that binds to G6P, and a catalytic coenzyme binding site that binds to NADP+/NADPH using the Rossman fold. | Depending on several conditions, it can dimerize to form tetramers. Each monomer in the complex has a substrate binding site that binds to G6P, and a catalytic coenzyme binding site that binds to NADP+/NADPH using the Rossman fold. | ||
- | + | This is a sample scene created with SAT to <scene name="/12/3456/Sample/1">color</scene> by Group, and another to make <scene name="/12/3456/Sample/2">a transparent representation</scene> of the protein. Y | |
- | This is a sample scene created with SAT to <scene name="/12/3456/Sample/1">color</scene> by Group, and another to make <scene name="/12/3456/Sample/2">a transparent representation</scene> of the protein. | + | |
</StructureSection> | </StructureSection> |
Revision as of 15:12, 8 January 2020
This Sandbox is Reserved from 25/11/2019, through 30/9/2020 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1091 through Sandbox Reserved 1115. |
To get started:
More help: Help:Editing |
Glucose-6-Phosphate Dehydrogenase from Leuconostoc mesenteroides
|
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
Ravera S., Calzia D., Morelli A. et Panfoli I. 2010. Oligomerization studies of Leuconostoc mesenteroides G6PD activity after SDS-PAGE and blotting. Molekuliarnaia Biologiia. 44(3):472-6. Cosgrove MS., Naylor C., Paludan S., Adams MJ. et Levy HR. 1998. On the mechanism of the reaction catalyzed by glucose 6-phosphate dehydrogenase. Biochemistry. 37(9):2759-67. Cosgrove MS., Loh SN., Ha JH. et Levy HR. 2002. The catalytic mechanism of glucose 6-phosphate dehydrogenases: assignment and 1H NMR spectroscopy pH titration of the catalytic histidine residue in the 109 kDa Leuconostoc mesenteroides enzyme. Biochemistry. 41(22):6939-45. Rowland P, Basak AK, Gover S, Levy HR, Adams MJ. The three-dimensional structure of glucose 6-phosphate dehydrogenase from Leuconostoc mesenteroides refined at 2.0 A resolution. Structure. 1994 Nov 15;2(11):1073-87.