Sandbox Reserved 1098
From Proteopedia
(Difference between revisions)
Line 21: | Line 21: | ||
=== Secondary Structure === | === Secondary Structure === | ||
- | This protein is 37% <scene name='82/829351/Helix/1'>helical</scene> and 13% beta sheet. Indeed, it has 25 helices on 198 residues and 23 strands on 74 residues. It has also few 3/10 helices. [http://www.rcsb.org/pdb/explore/remediatedSequence.do?structureId=6HMM] | + | This protein is 37% <scene name='82/829351/Helix/1'>helical</scene> and 13% <scene name='82/829351/Sheet/1'>beta sheet</scene>. Indeed, it has 25 helices on 198 residues and 23 strands on 74 residues. It has also few 3/10 helices. [http://www.rcsb.org/pdb/explore/remediatedSequence.do?structureId=6HMM] |
Involving the torsion angles the backbone and the sidechain have to be differentiated. Indeed none residue does't respect the Ramachandran's angle, whereas in sidechains where 2% of the residues are Ramachandran outliers because they have non-rotameric sidechains. [http://files.rcsb.org/pub/pdb/validation_reports/hm/6hmm/6hmm_full_validation.pdf] | Involving the torsion angles the backbone and the sidechain have to be differentiated. Indeed none residue does't respect the Ramachandran's angle, whereas in sidechains where 2% of the residues are Ramachandran outliers because they have non-rotameric sidechains. [http://files.rcsb.org/pub/pdb/validation_reports/hm/6hmm/6hmm_full_validation.pdf] | ||
Revision as of 19:46, 10 January 2020
This Sandbox is Reserved from 25/11/2019, through 30/9/2020 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1091 through Sandbox Reserved 1115. |
To get started:
More help: Help:Editing |
6HMM
|
References
- ↑ Hanson, R. M., Prilusky, J., Renjian, Z., Nakane, T. and Sussman, J. L. (2013), JSmol and the Next-Generation Web-Based Representation of 3D Molecular Structure as Applied to Proteopedia. Isr. J. Chem., 53:207-216. doi:http://dx.doi.org/10.1002/ijch.201300024
- ↑ Herraez A. Biomolecules in the computer: Jmol to the rescue. Biochem Mol Biol Educ. 2006 Jul;34(4):255-61. doi: 10.1002/bmb.2006.494034042644. PMID:21638687 doi:10.1002/bmb.2006.494034042644
- ↑ Oberle C, Blattner C. Regulation of the DNA Damage Response to DSBs by Post-Translational Modifications. Curr Genomics. 2010 May;11(3):184-98. doi: 10.2174/138920210791110979. PMID:21037856 doi:http://dx.doi.org/10.2174/138920210791110979
- ↑ Slade D, Dunstan MS, Barkauskaite E, Weston R, Lafite P, Dixon N, Ahel M, Leys D, Ahel I. The structure and catalytic mechanism of a poly(ADP-ribose) glycohydrolase. Nature. 2011 Sep 4. doi: 10.1038/nature10404. PMID:21892188 doi:10.1038/nature10404
- ↑ 5.0 5.1 5.2 5.3 Waszkowycz B, Smith KM, McGonagle AE, Jordan AM, Acton B, Fairweather EE, Griffiths LA, Hamilton NM, Hamilton NS, Hitchin JR, Hutton CP, James DI, Jones CD, Jones S, Mould DP, Small HF, Stowell AIJ, Tucker JA, Waddell ID, Ogilvie DJ. Cell-Active Small Molecule Inhibitors of the DNA-Damage Repair Enzyme Poly(ADP-ribose) Glycohydrolase (PARG): Discovery and Optimization of Orally Bioavailable Quinazolinedione Sulfonamides. J Med Chem. 2018 Dec 13;61(23):10767-10792. doi: 10.1021/acs.jmedchem.8b01407., Epub 2018 Nov 19. PMID:30403352 doi:http://dx.doi.org/10.1021/acs.jmedchem.8b01407
- ↑ 6.0 6.1 6.2 6.3 James DI, Smith KM, Jordan AM, Fairweather EE, Griffiths LA, Hamilton NS, Hitchin JR, Hutton CP, Jones S, Kelly P, McGonagle AE, Small H, Stowell AI, Tucker J, Waddell ID, Waszkowycz B, Ogilvie DJ. First-in-Class Chemical Probes against Poly(ADP-ribose) Glycohydrolase (PARG) Inhibit DNA Repair with Differential Pharmacology to Olaparib. ACS Chem Biol. 2016 Oct 12. PMID:27689388 doi:http://dx.doi.org/10.1021/acschembio.6b00609
- ↑ Fisher AE, Hochegger H, Takeda S, Caldecott KW. Poly(ADP-ribose) polymerase 1 accelerates single-strand break repair in concert with poly(ADP-ribose) glycohydrolase. Mol Cell Biol. 2007 Aug;27(15):5597-605. doi: 10.1128/MCB.02248-06. Epub 2007 Jun, 4. PMID:17548475 doi:http://dx.doi.org/10.1128/MCB.02248-06
- ↑ Kim MY, Zhang T, Kraus WL. Poly(ADP-ribosyl)ation by PARP-1: 'PAR-laying' NAD+ into a nuclear signal. Genes Dev. 2005 Sep 1;19(17):1951-67. doi: 10.1101/gad.1331805. PMID:16140981 doi:http://dx.doi.org/10.1101/gad.1331805