Sandbox Reserved 1091

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 6: Line 6:
== Generalities ==
== Generalities ==
-
The ''Aeromonas Sobria Serine Protease'' ASP protein is a '''serine protease''' that will cut peptide bonds after specific amino acids of a target protein. It preferentially cleaves peptide bonds that follow dibasic amino-acid residues. The kexin-like serine protease belongs to the subtilisin family ([http://en.m.wikipedia.org/wiki/Subtilase Subtilase]). The structure of ASP is similar to that of ''Kex2'' <ref>PMID:2646633</ref> ([[1r64]]), a protease of the subtilisin family, but ASP has a unique extra occluding region close to its active site.
+
The ''Aeromonas Sobria Serine Protease'' ASP protein is a '''serine protease''' that will cut peptide bonds after specific amino acids of a target protein. It preferentially cleaves peptide bonds that follow dibasic amino-acid residues. The kexin-like serine protease belongs to the subtilisin family ([http://en.m.wikipedia.org/wiki/Subtilase Subtilase]). The structure of ASP is similar to that of ''Kex2'' <ref>PMID:2646633</ref> ([[1r64]]), a protease of the subtilisin family from Saccharomyces cerevisiae.
This belonging to the subtilisin serine proteases family is hypothetical. Furthermore the predicted amino acid sequence reinforces this speculation. However, the size of the ASP (MW 65000) is unlike other subtilisin proteases (MW 30000). Also, the amino acid residues composition is different from the family’s characteristics because ASP shows unique cysteine residues that other family members don't show. Therefore we can state that it is likely that ASP belongs to the subtilisin serine proteases family, however it remains unclear.
This belonging to the subtilisin serine proteases family is hypothetical. Furthermore the predicted amino acid sequence reinforces this speculation. However, the size of the ASP (MW 65000) is unlike other subtilisin proteases (MW 30000). Also, the amino acid residues composition is different from the family’s characteristics because ASP shows unique cysteine residues that other family members don't show. Therefore we can state that it is likely that ASP belongs to the subtilisin serine proteases family, however it remains unclear.
Line 47: Line 47:
== Active site ==
== Active site ==
-
'''The catalytic triad:''' The [http://en.wikipedia.org/wiki/Catalytic_triad.com catalytic triad] of ASP is composed of <b>Asp78</b>, <b>His115</b> and <b>Ser336</b>. These amino acids are the base is the active site of the protein, where the mode of action of the serine protease takes place. A peptide can be inserted in the space of the active site. There, the amino acids of <scene name='82/829344/Catalytic_triad/2'>the catalytic triad</scene> will interact together and the mechanism will lead to a cut in the polypeptide.
+
'''The catalytic triad:''' The [http://en.wikipedia.org/wiki/Catalytic_triad.com catalytic triad] of ASP is composed of '''Asp78''', '''His115''' and '''Ser336'''. These amino acids are the base is the active site of the protein, where the mode of action of the serine protease takes place. A peptide can be inserted in the space of the active site. There, the amino acids of <scene name='82/829344/Catalytic_triad/2'>the catalytic triad</scene> will interact together and the mechanism will lead to a cut in the polypeptide.
'''Mechanism:''' The mechanism is the following: The histidine will react with the serine and deprotonate it. '''The deprotonated hydroxyl group of the serine will act as a nucleophilic species''' and attack the carbon from the carbonyl function on the peptide. This will lead to the formation of a tetrahedral intermediate. Then, a second tetrahedral intermediate will be formed, but with the attack of a deprotonated water molecule. In the end, the regeneration of the active site will be done with the release of the peptide cut in two parts.
'''Mechanism:''' The mechanism is the following: The histidine will react with the serine and deprotonate it. '''The deprotonated hydroxyl group of the serine will act as a nucleophilic species''' and attack the carbon from the carbonyl function on the peptide. This will lead to the formation of a tetrahedral intermediate. Then, a second tetrahedral intermediate will be formed, but with the attack of a deprotonated water molecule. In the end, the regeneration of the active site will be done with the release of the peptide cut in two parts.
Line 53: Line 53:
-
== Classification and properties ==
+
== Properties ==
-
Performed experiments aimed to study the classification of ASP through inhibition, as well as the ability to enhance vascular permeability in the dorsal skin tissue of rodents (Wistar rat).
+
ASP has its highest activity at pH 7,5 and loses it after heating at 60° for 10 minutes.
-
The ASP protease activity was strongly attenuated by serine protease inhibitors (DFP, AEBSEF). Moreover, a soybean trypsin inhibitor was shown not to block the proteolytic action of ASP itself but could inhibit the vascular permeability enhancing activity that follows after injection of ASP into epithelial cells. <ref>Physicochemical and biological properties od an extracellular serine protease od Aeromonas sobria. Ritsuko Yokoyama, Yoshio Fujii et al., 2002 Japan.</ref>
+
Experiments have been done in order to establish the sensitivity of ASP to proteases. In has been found that the ASP protease activity was strongly attenuated by serine protease inhibitors (DFP, AEBSEF). Moreover, a soybean trypsin inhibitor was shown not to block the proteolytic action of ASP itself but could inhibit the vascular permeability enhancing activity that follows after injection of ASP into epithelial cells. <ref>Physicochemical and biological properties od an extracellular serine protease od Aeromonas sobria. Ritsuko Yokoyama, Yoshio Fujii et al., 2002 Japan.</ref>
This experimental finding suggests that epithelial trypsin-like proteases mediate the reaction causing enhanced vascular permeability. It is likely that ASP stimulates the secretion and maturation of epithelial trypsin proteases, thus enhancing vascular permeability. ASP could stimulate the bradykinin-releasing pathway, thus stimulating mast cells to release histamine and further enhance the vascular permeability.
This experimental finding suggests that epithelial trypsin-like proteases mediate the reaction causing enhanced vascular permeability. It is likely that ASP stimulates the secretion and maturation of epithelial trypsin proteases, thus enhancing vascular permeability. ASP could stimulate the bradykinin-releasing pathway, thus stimulating mast cells to release histamine and further enhance the vascular permeability.

Revision as of 08:10, 16 January 2020

This Sandbox is Reserved from 25/11/2019, through 30/9/2020 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1091 through Sandbox Reserved 1115.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

The serine protease from Aeromonas sobria

General structure of ASP protein (with Ca2+ Binding Site and Disulfide Bridges)

Drag the structure with the mouse to rotate

References

  1. Fuller RS, Brake A, Thorner J. Yeast prohormone processing enzyme (KEX2 gene product) is a Ca2+-dependent serine protease. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1434-8. PMID:2646633
  2. Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Takahisa Imamura et al., 2017
  3. https://www.msdmanuals.com/professional/critical-care-medicine/sepsis-and-septic-shock/sepsis-and-septic-shock
  4. Physicochemical and biological properties od an extracellular serine protease od Aeromonas sobria. Ritsuko Yokoyama, Yoshio Fujii et al., 2002 Japan.

Personal tools