Sandbox Reserved 1091

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 60: Line 60:
A schematic representation of the mechanism with the involved amino acids can be found under the following link : [http://fr.wikipedia.org/wiki/Fichier:Serine_protease_mechanism_by_snellios.png '''mechanism of the reaction''' ]
A schematic representation of the mechanism with the involved amino acids can be found under the following link : [http://fr.wikipedia.org/wiki/Fichier:Serine_protease_mechanism_by_snellios.png '''mechanism of the reaction''' ]
-
The peptide bonds were shown to be cleaved when two basic residues were in sequence. A Lys residue at positions P1 and P2 relative to the cleavage site is prefered. If an Arg residue is at P4 position the substrate cleavage will be enhanced. <ref>Cleavage specificity of serine protease of Aeromonas sobria, a member of the kexin family of subtilases., H. Kobayashi, Okayama University, Japan,FEMS Microbiology Letters, Volume 256, Issue 1, March 2006, Pages 165–170,</ref>
 
== Properties ==
== Properties ==
ASP has its highest activity at pH 7,5 and loses it after heating at 60° for 10 minutes. <ref>Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Imamura T, Murakami Y, Nitta H. Biol. Chem. 398 1055-1068 (2017)</ref>
ASP has its highest activity at pH 7,5 and loses it after heating at 60° for 10 minutes. <ref>Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Imamura T, Murakami Y, Nitta H. Biol. Chem. 398 1055-1068 (2017)</ref>
 +
 +
The peptide bonds were shown to be cleaved when two basic residues were in sequence. A Lys residue at positions P1 and P2 relative to the cleavage site is prefered. If an Arg residue is at P4 position the substrate cleavage will be enhanced. <ref>Cleavage specificity of serine protease of Aeromonas sobria, a member of the kexin family of subtilases., H. Kobayashi, Okayama University, Japan,FEMS Microbiology Letters, Volume 256, Issue 1, March 2006, Pages 165–170,</ref>
Experiments have been done in order to establish the sensitivity of ASP to proteases. In has been found that the ASP protease activity was strongly attenuated by serine protease inhibitors ([http://en.wikipedia.org/wiki/Diisopropyl_fluorophosphate DFP], [http://fr.wikipedia.org/wiki/Fluorure_de_4-(2-aminoéthyl)benzènesulfonyle AEBSF]). Moreover, a soybean [http://en.wikipedia.org/wiki/Trypsin_inhibitor trypsin inhibitor] was shown not to block the proteolytic action of ASP itself but could inhibit the [http://en.m.wikipedia.org/wiki/Vascular_permeability vascular permeability] enhancing activity that follows after injection of ASP into epithelial cells. <ref>Physicochemical and biological properties od an extracellular serine protease od Aeromonas sobria. Ritsuko Yokoyama, Yoshio Fujii et al. Japan (2002)</ref>
Experiments have been done in order to establish the sensitivity of ASP to proteases. In has been found that the ASP protease activity was strongly attenuated by serine protease inhibitors ([http://en.wikipedia.org/wiki/Diisopropyl_fluorophosphate DFP], [http://fr.wikipedia.org/wiki/Fluorure_de_4-(2-aminoéthyl)benzènesulfonyle AEBSF]). Moreover, a soybean [http://en.wikipedia.org/wiki/Trypsin_inhibitor trypsin inhibitor] was shown not to block the proteolytic action of ASP itself but could inhibit the [http://en.m.wikipedia.org/wiki/Vascular_permeability vascular permeability] enhancing activity that follows after injection of ASP into epithelial cells. <ref>Physicochemical and biological properties od an extracellular serine protease od Aeromonas sobria. Ritsuko Yokoyama, Yoshio Fujii et al. Japan (2002)</ref>

Revision as of 18:42, 16 January 2020

This Sandbox is Reserved from 25/11/2019, through 30/9/2020 for use in the course "Structural Biology" taught by Bruno Kieffer at the University of Strasbourg, ESBS. This reservation includes Sandbox Reserved 1091 through Sandbox Reserved 1115.
To get started:
  • Click the edit this page tab at the top. Save the page after each step, then edit it again.
  • show the Scene authoring tools, create a molecular scene, and save it. Copy the green link into the page.
  • Add a description of your scene. Use the buttons above the wikitext box for bold, italics, links, headlines, etc.

More help: Help:Editing

The serine protease from Aeromonas sobria : ASP

General structure of ASP protein (with Ca2+ Binding Site and Disulfide Bridges)

Drag the structure with the mouse to rotate

References

  1. Fuller RS, Brake A, Thorner J. Yeast prohormone processing enzyme (KEX2 gene product) is a Ca2+-dependent serine protease. Proc Natl Acad Sci U S A. 1989 Mar;86(5):1434-8. PMID:2646633
  2. Siezen RJ & Leunissen JAM (1997) Subtilase: the superfamily of subtilisin-like serine proteases. Protein Sci 6: 501–523.
  3. Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Takahisa Imamura et al. (2017)
  4. http://www.msdmanuals.com/professional/critical-care-medicine/sepsis-and-septic-shock/sepsis-and-septic-shock
  5. Structural Basis for Action of the External Chaperone for a Propeptide-deficient Serine Protease from Aeromonas sobria. Kobayashi H et al. Biol. Chem. 290(17):11130-43 (2015)
  6. Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Imamura T, Murakami Y, Nitta H. Biol. Chem. 398 1055-1068 (2017)
  7. Structural Basis for the Kexin-like Serine Protease from Aeromonas sobria as Sepsis-causing Factor. H Kobayashi et al. J Biol Chem. 284(40): 27655–27663 (2009)
  8. http://fr.wikipedia.org/wiki/Fichier:Serine_protease_mechanism_by_snellios.png
  9. Aeromonas sobria serine protease (ASP): a subtilisin family endopeptidase with multiple virulence activities. Imamura T, Murakami Y, Nitta H. Biol. Chem. 398 1055-1068 (2017)
  10. Cleavage specificity of serine protease of Aeromonas sobria, a member of the kexin family of subtilases., H. Kobayashi, Okayama University, Japan,FEMS Microbiology Letters, Volume 256, Issue 1, March 2006, Pages 165–170,
  11. Physicochemical and biological properties od an extracellular serine protease od Aeromonas sobria. Ritsuko Yokoyama, Yoshio Fujii et al. Japan (2002)
  12. Physicochemical and biological properties od an extracellular serine protease od Aeromonas sobria. Ritsuko Yokoyama, Yoshio Fujii et al. Japan (2002)
  13. Joseph, S. W., O. P. Daily, W. S. Hunt, R. J. Seidler, D. A. Allen, and R. R. Colwell. 1979. Aeromonas primary wound infection of a diver in polluted waters. J. Clin. Microbiol. 10:46-49.
  14. Cleavage specificity of serine protease of Aeromonas sobria, a member of the kexin family of subtilases., H. Kobayashi, Okayama University, Japan,FEMS Microbiology Letters, Volume 256, Issue 1, March 2006, Pages 165–170,
  15. Inhibition of Aeromonas sobria serine protease (ASP) by α2-macroglobulin. Murakami Y et al. Biol Chem. 393(10):1193-200 (2012)

Personal tools