|
|
Line 3: |
Line 3: |
| <StructureSection load='3r8r' size='340' side='right'caption='[[3r8r]], [[Resolution|resolution]] 1.90Å' scene=''> | | <StructureSection load='3r8r' size='340' side='right'caption='[[3r8r]], [[Resolution|resolution]] 1.90Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[3r8r]] is a 20 chain structure with sequence from [http://en.wikipedia.org/wiki/"vibrio_subtilis"_ehrenberg_1835 "vibrio subtilis" ehrenberg 1835]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3R8R OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3R8R FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[3r8r]] is a 20 chain structure with sequence from [https://en.wikipedia.org/wiki/"vibrio_subtilis"_ehrenberg_1835 "vibrio subtilis" ehrenberg 1835]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=3R8R OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=3R8R FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=GOL:GLYCEROL'>GOL</scene>, <scene name='pdbligand=SO4:SULFATE+ION'>SO4</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[3r5e|3r5e]]</td></tr> | + | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat"><div style='overflow: auto; max-height: 3em;'>[[3r5e|3r5e]]</div></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">BSU37110, tal, ywjH ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1423 "Vibrio subtilis" Ehrenberg 1835])</td></tr> | + | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">BSU37110, tal, ywjH ([https://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=1423 "Vibrio subtilis" Ehrenberg 1835])</td></tr> |
- | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[http://en.wikipedia.org/wiki/Transaldolase Transaldolase], with EC number [http://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.2.1.2 2.2.1.2] </span></td></tr> | + | <tr id='activity'><td class="sblockLbl"><b>Activity:</b></td><td class="sblockDat"><span class='plainlinks'>[https://en.wikipedia.org/wiki/Transaldolase Transaldolase], with EC number [https://www.brenda-enzymes.info/php/result_flat.php4?ecno=2.2.1.2 2.2.1.2] </span></td></tr> |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=3r8r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3r8r OCA], [http://pdbe.org/3r8r PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=3r8r RCSB], [http://www.ebi.ac.uk/pdbsum/3r8r PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=3r8r ProSAT]</span></td></tr> | + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=3r8r FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=3r8r OCA], [https://pdbe.org/3r8r PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=3r8r RCSB], [https://www.ebi.ac.uk/pdbsum/3r8r PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=3r8r ProSAT]</span></td></tr> |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/TAL_BACSU TAL_BACSU]] Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. Does not show fructose-6-P aldolase activity.<ref>PMID:11120740</ref> | + | [[https://www.uniprot.org/uniprot/TAL_BACSU TAL_BACSU]] Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. Does not show fructose-6-P aldolase activity.<ref>PMID:11120740</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 23: |
Line 23: |
| | | |
| ==See Also== | | ==See Also== |
- | *[[Transaldolase|Transaldolase]] | + | *[[Transaldolase 3D structures|Transaldolase 3D structures]] |
| == References == | | == References == |
| <references/> | | <references/> |
| Structural highlights
Function
[TAL_BACSU] Transaldolase is important for the balance of metabolites in the pentose-phosphate pathway. Does not show fructose-6-P aldolase activity.[1]
Publication Abstract from PubMed
Transaldolase (Tal) is involved in the central carbon metabolism, i.e. the non-oxidative pentose phosphate pathway, and is therefore a ubiquitous enzyme. However, Tals show a low degree in sequence identity and vary in length within the enzyme family which previously led to the definition of five subfamilies. We wondered how this variation is conserved in structure and function. To answer this question we characterised and compared the Tals from Bacillus subtilis, Corynebacterium glutamicum and Escherichia coli, each belonging to a different subfamily, with respect to their biochemical properties and structures. The overall structure of the Tal domain, a (beta/alpha)(8) -barrel fold, is well conserved between the different subfamilies but the enzymes show different degrees of oligomerisation (monomer, dimer and decamer). The substrate specificity of the three enzymes investigated is quite similar which is reflected in the conservation of the active site, the phosphate binding site as well as the position of a catalytically important water molecule. All decameric enzymes characterised so far appear to be heat stable no matter whether they originate from a mesophilic or thermophilic organism. Hence, the thermostability might be due to the structural properties, i.e. tight packing, of these enzymes. Database The crystal structures have been deposited in the Protein Data Bank with accession code 3R8R for BsTal and 3R5E for CgTal. Structured digital abstract * BsTal and BsTal bind by x-ray crystallography (View interaction) * BsTal and BsTal bind by x-ray crystallography (View interaction).
Conservation of structure and mechanism within the transaldolase enzyme family.,Samland AK, Baier S, Schurmann M, Inoue T, Huf S, Schneider G, Sprenger GA, Sandalova T FEBS J. 2011 Dec 25. doi: 10.1111/j.1742-4658.2011.08467.x. PMID:22212631[2]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ Schurmann M, Sprenger GA. Fructose-6-phosphate aldolase is a novel class I aldolase from Escherichia coli and is related to a novel group of bacterial transaldolases. J Biol Chem. 2001 Apr 6;276(14):11055-61. Epub 2000 Dec 18. PMID:11120740 doi:http://dx.doi.org/10.1074/jbc.M008061200
- ↑ Samland AK, Baier S, Schurmann M, Inoue T, Huf S, Schneider G, Sprenger GA, Sandalova T. Conservation of structure and mechanism within the transaldolase enzyme family. FEBS J. 2011 Dec 25. doi: 10.1111/j.1742-4658.2011.08467.x. PMID:22212631 doi:10.1111/j.1742-4658.2011.08467.x
|