Basics of Protein Structure

From Proteopedia

(Difference between revisions)
Jump to: navigation, search
Line 2: Line 2:
' scene=''
' scene=''
pspeed='8'>
pspeed='8'>
-
Proteins perform many important functions in living organisms, including movement, immune responses, sensing the environment, energy acquisition, and catalyzing reactions. The protein shown to the right is insulin; when insulin isn't properly synthesized or responded to, diabetes occurs.
+
Proteins perform many important functions in living organisms, including movement, immune responses, sensing the environment, energy acquisition, and catalyzing reactions. The protein shown to the right is insulin; when insulin isn't properly synthesized or recognized, diabetes occurs.
Proteins are long [[chains]] of [[Amino Acids]], and are synthesized by the [[ribosome]], using messenger [[RNA]] as a template. There are 20 amino acids commonly found in proteins. <scene name='60/604417/Ala/2'>Amino acids</scene> contain an <scene name='60/604417/Ala_amino/1'>amino group</scene>, a central carbon atom called the <scene name='60/604417/Ala_alpha/1'>alpha carbon</scene>, and a <scene name='60/604417/Ala_cooh/1'>carboxylic acid</scene>. The 20 amino acids differ by what is attached to the central atom; is variable portion is referred to as the <scene name='60/604417/Ala_side_chain/1'>side chain</scene>. The amino acid shown is alanine; its side chain is a methyl (-CH3) group. The atoms are displayed using the [[CPK|coloring convention]] '''<font color="#808080">Carbon</font>, <span style="background-color:black;color:white;">&nbsp;Hydrogen&nbsp;</span>, <font color="red">Oxygen</font>, <font color="#3050f8">Nitrogen</font>''': {{Template:ColorKey_Element_C}}, {{Template:ColorKey_Element_H}}, {{Template:ColorKey_Element_O}}, {{Template:ColorKey_Element_N}}.
Proteins are long [[chains]] of [[Amino Acids]], and are synthesized by the [[ribosome]], using messenger [[RNA]] as a template. There are 20 amino acids commonly found in proteins. <scene name='60/604417/Ala/2'>Amino acids</scene> contain an <scene name='60/604417/Ala_amino/1'>amino group</scene>, a central carbon atom called the <scene name='60/604417/Ala_alpha/1'>alpha carbon</scene>, and a <scene name='60/604417/Ala_cooh/1'>carboxylic acid</scene>. The 20 amino acids differ by what is attached to the central atom; is variable portion is referred to as the <scene name='60/604417/Ala_side_chain/1'>side chain</scene>. The amino acid shown is alanine; its side chain is a methyl (-CH3) group. The atoms are displayed using the [[CPK|coloring convention]] '''<font color="#808080">Carbon</font>, <span style="background-color:black;color:white;">&nbsp;Hydrogen&nbsp;</span>, <font color="red">Oxygen</font>, <font color="#3050f8">Nitrogen</font>''': {{Template:ColorKey_Element_C}}, {{Template:ColorKey_Element_H}}, {{Template:ColorKey_Element_O}}, {{Template:ColorKey_Element_N}}.
Line 9: Line 9:
== Levels of Protein Structure ==
== Levels of Protein Structure ==
-
There are [[Four levels of protein structure|four different levels of protein structure]]. The <scene name='60/604417/Ins_bead_backbone_labels/1'>primary structure</scene> is the amino acid sequence. The amino acids are connected by an amide bond, made from the amino group (NH2) of one amino acid, and the carboxylic acid (C=O) from another amino acid. The amino acids are linked in a repeating pattern. The [[Backbone representations|backbone]] of the protein is the repeating N-C-C=O pattern, with the side chains projecting out from the backbone. The end with the free -NH2 group is called the Amino or <scene name='60/604417/N_terminus/1'>N terminus</scene>, while the end with a free carboxylic acid is called the <scene name='60/604417/C_terminus/1'>C terminus</scene>. The sequence of amino acids is written and numbered from the N terminus (where protein synthesis begins) to the C terminus (where amino acids are added during protein synthesis), so for <scene name='60/604417/N_to_c/1'>the segment shown</scene>, the sequence would be Val-Asn-Gln. For more practice identifying peptide bonds between amino acids, please try [[User:Stephen Mills/Peptide tutorial 1|Peptide tutorial 1 part 1]] and [[User:Stephen Mills/Peptide tutorial 2|Peptide tutorial 1 part 2]].
+
There are [[Four levels of protein structure|four different levels of protein structure]]. The <scene name='60/604417/Ins_bead_backbone_labels/1'>primary structure</scene> is the amino acid sequence. The amino acids are connected by an amide bond, made from the amino group (NH2) of one amino acid, and the carboxylic acid (C=O) from another amino acid. In the process of making the bond, a water molecule is removed. The amino acids are linked in a repeating pattern. The [[Backbone representations|backbone]] of the protein is the repeating <scene name='60/604417/N_calpha_co/2'>N-C-C=O</scene> pattern, with the <scene name='60/604417/Side_chains/1'>side chains</scene> projecting out from the backbone. The end with the free -NH2 group is called the Amino or <scene name='60/604417/N_terminus/1'>N terminus</scene>, while the end with a free carboxylic acid is called the <scene name='60/604417/C_terminus/1'>C terminus</scene>. The sequence of amino acids is written and numbered from the N terminus (where protein synthesis begins) to the C terminus (where amino acids are added during protein synthesis), so for <scene name='60/604417/N_to_c/1'>the segment shown</scene>, the sequence would be Val-Asn-Gln, or VNQ, if one letter abbreviations are used for the amino acids. For more practice identifying peptide bonds between amino acids, please try [[User:Stephen Mills/Peptide tutorial 1|Peptide tutorial 1 part 1]] and [[User:Stephen Mills/Peptide tutorial 2|Peptide tutorial 1 part 2]].
-
The second level of structure is called secondary structure, and is the shapes (conformations) formed by short sequences of amino acids. This level of structure is stabilized by <scene name='57/575866/H_bond_a_helix/3'>hydrogen bonds</scene> along the <scene name='57/575866/Backbone/2'>backbone</scene>. (More about [[hydrogen bonds]].) The two most common shapes are [[Helices in Proteins|alpha helices]] and [[Sheets in Proteins|beta strands]]. These are favored simply because [[Tutorial:Ramachandran principle and phi psi angles|two atoms cannot occupy the same space]] (steric collisions).
+
The second level of structure is called secondary structure, and is the shapes (conformations) formed by short sequences of amino acids. This level of structure is stabilized by <scene name='60/604417/H_bonds/1'>hydrogen bonds</scene> along the backbone. Hydrogen bonds are attractions between an N, O or F and a hydrogen attached to an N, O or F (More about [[hydrogen bonds]].) The two most common shapes are [[Helices in Proteins|alpha helices]] and [[Sheets in Proteins|beta strands]]. These are favored simply because [[Tutorial:Ramachandran principle and phi psi angles|two atoms cannot occupy the same space]] (steric collisions).
==Protein Structure Data==
==Protein Structure Data==

Revision as of 03:59, 3 February 2020

Structure of insulin (PDB entry 3I40)

Drag the structure with the mouse to rotate

Proteopedia Page Contributors and Editors (what is this?)

Ann Taylor, Eric Martz, Joel L. Sussman

Personal tools