|
|
Line 3: |
Line 3: |
| <StructureSection load='4y6q' size='340' side='right'caption='[[4y6q]], [[Resolution|resolution]] 1.90Å' scene=''> | | <StructureSection load='4y6q' size='340' side='right'caption='[[4y6q]], [[Resolution|resolution]] 1.90Å' scene=''> |
| == Structural highlights == | | == Structural highlights == |
- | <table><tr><td colspan='2'>[[4y6q]] is a 4 chain structure with sequence from [http://en.wikipedia.org/wiki/Human Human]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4Y6Q OCA]. For a <b>guided tour on the structure components</b> use [http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4Y6Q FirstGlance]. <br> | + | <table><tr><td colspan='2'>[[4y6q]] is a 4 chain structure with sequence from [https://en.wikipedia.org/wiki/Homo_sapiens Homo sapiens]. Full crystallographic information is available from [http://oca.weizmann.ac.il/oca-bin/ocashort?id=4Y6Q OCA]. For a <b>guided tour on the structure components</b> use [https://proteopedia.org/fgij/fg.htm?mol=4Y6Q FirstGlance]. <br> |
- | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat"><scene name='pdbligand=OMR:[(2S,3R,4R,5R)-5-[[[[(2R,3S,4R,5R)-5-(6-AMINOPURIN-9-YL)-3,4-BIS(OXIDANYL)OXOLAN-2-YL]METHOXY-OXIDANYL-PHOSPHORYL]OXY-OXIDANYL-PHOSPHORYL]OXYMETHYL]-2,4-BIS(OXIDANYL)OXOLAN-3-YL]+TETRADECANOATE'>OMR</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> | + | </td></tr><tr id='ligand'><td class="sblockLbl"><b>[[Ligand|Ligands:]]</b></td><td class="sblockDat" id="ligandDat"><scene name='pdbligand=OMR:[(2S,3R,4R,5R)-5-[[[[(2R,3S,4R,5R)-5-(6-AMINOPURIN-9-YL)-3,4-BIS(OXIDANYL)OXOLAN-2-YL]METHOXY-OXIDANYL-PHOSPHORYL]OXY-OXIDANYL-PHOSPHORYL]OXYMETHYL]-2,4-BIS(OXIDANYL)OXOLAN-3-YL]+TETRADECANOATE'>OMR</scene>, <scene name='pdbligand=ZN:ZINC+ION'>ZN</scene></td></tr> |
- | <tr id='related'><td class="sblockLbl"><b>[[Related_structure|Related:]]</b></td><td class="sblockDat">[[4y6l|4y6l]], [[4y6o|4y6o]]</td></tr>
| + | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[https://proteopedia.org/fgij/fg.htm?mol=4y6q FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4y6q OCA], [https://pdbe.org/4y6q PDBe], [https://www.rcsb.org/pdb/explore.do?structureId=4y6q RCSB], [https://www.ebi.ac.uk/pdbsum/4y6q PDBsum], [https://prosat.h-its.org/prosat/prosatexe?pdbcode=4y6q ProSAT]</span></td></tr> |
- | <tr id='gene'><td class="sblockLbl"><b>[[Gene|Gene:]]</b></td><td class="sblockDat">SIRT2, SIR2L, SIR2L2 ([http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Info&srchmode=5&id=9606 HUMAN])</td></tr>
| + | |
- | <tr id='resources'><td class="sblockLbl"><b>Resources:</b></td><td class="sblockDat"><span class='plainlinks'>[http://oca.weizmann.ac.il/oca-docs/fgij/fg.htm?mol=4y6q FirstGlance], [http://oca.weizmann.ac.il/oca-bin/ocaids?id=4y6q OCA], [http://pdbe.org/4y6q PDBe], [http://www.rcsb.org/pdb/explore.do?structureId=4y6q RCSB], [http://www.ebi.ac.uk/pdbsum/4y6q PDBsum], [http://prosat.h-its.org/prosat/prosatexe?pdbcode=4y6q ProSAT]</span></td></tr> | + | |
| </table> | | </table> |
| == Function == | | == Function == |
- | [[http://www.uniprot.org/uniprot/SIR2_HUMAN SIR2_HUMAN]] NAD-dependent protein deacetylase, which deacetylates internal lysines on histone and non-histone proteins. Deacetylates 'Lys-40' of alpha-tubulin. Involved in the control of mitotic exit in the cell cycle, probably via its role in the regulation of cytoskeleton. Deacetylates PCK1, opposing proteasomal degradation. Deacetylates 'Lys-310' of RELA.<ref>PMID:12620231</ref> <ref>PMID:12697818</ref> <ref>PMID:21081649</ref> <ref>PMID:21726808</ref> | + | [https://www.uniprot.org/uniprot/SIR2_HUMAN SIR2_HUMAN] NAD-dependent protein deacetylase, which deacetylates internal lysines on histone and non-histone proteins. Deacetylates 'Lys-40' of alpha-tubulin. Involved in the control of mitotic exit in the cell cycle, probably via its role in the regulation of cytoskeleton. Deacetylates PCK1, opposing proteasomal degradation. Deacetylates 'Lys-310' of RELA.<ref>PMID:12620231</ref> <ref>PMID:12697818</ref> <ref>PMID:21081649</ref> <ref>PMID:21726808</ref> |
| <div style="background-color:#fffaf0;"> | | <div style="background-color:#fffaf0;"> |
| == Publication Abstract from PubMed == | | == Publication Abstract from PubMed == |
Line 27: |
Line 25: |
| __TOC__ | | __TOC__ |
| </StructureSection> | | </StructureSection> |
- | [[Category: Human]] | + | [[Category: Homo sapiens]] |
| [[Category: Large Structures]] | | [[Category: Large Structures]] |
- | [[Category: Ito, A]] | + | [[Category: Ito A]] |
- | [[Category: Kudo, N]] | + | [[Category: Kudo N]] |
- | [[Category: Yoshida, M]] | + | [[Category: Yoshida M]] |
- | [[Category: 2-o-myristoyl-adp-ribose]]
| + | |
- | [[Category: Acyl-adp-ribose]]
| + | |
- | [[Category: Complex]]
| + | |
- | [[Category: Deacylase]]
| + | |
- | [[Category: Hydrolase]]
| + | |
- | [[Category: Intermediate]]
| + | |
- | [[Category: Nad-dependent deacetylase]]
| + | |
- | [[Category: Sirt]]
| + | |
- | [[Category: Sirtuin]]
| + | |
| Structural highlights
Function
SIR2_HUMAN NAD-dependent protein deacetylase, which deacetylates internal lysines on histone and non-histone proteins. Deacetylates 'Lys-40' of alpha-tubulin. Involved in the control of mitotic exit in the cell cycle, probably via its role in the regulation of cytoskeleton. Deacetylates PCK1, opposing proteasomal degradation. Deacetylates 'Lys-310' of RELA.[1] [2] [3] [4]
Publication Abstract from PubMed
Acylation of lysine is an important protein modification regulating diverse biological processes. It was recently demonstrated that members of the human Sirtuin family are capable of catalyzing long chain deacylation, in addition to the well-known NAD(+)-dependent deacetylation activity [Feldman, J. L., Baeza, J., and Denu, J. M. (2013) J. Biol. Chem. 288, 31350-31356]. Here we provide a detailed kinetic and structural analysis that describes the interdependence of NAD(+)-binding and acyl-group selectivity for a diverse series of human Sirtuins, SIRT1-SIRT3 and SIRT6. Steady-state and rapid-quench kinetic analyses indicated that differences in NAD(+) saturation and susceptibility to nicotinamide inhibition reflect unique kinetic behavior displayed by each Sirtuin and depend on acyl substrate chain length. Though the rate of nucleophilic attack of the 2'-hydroxyl on the C1'-O-alkylimidate intermediate varies with acyl substrate chain length, this step remains rate-determining for SIRT2 and SIRT3; however, for SIRT6, this step is no longer rate-limiting for long chain substrates. Cocrystallization of SIRT2 with myristoylated peptide and NAD(+) yielded a co-complex structure with reaction product 2'-O-myristoyl-ADP-ribose, revealing a latent hydrophobic cavity to accommodate the long chain acyl group, and suggesting a general mechanism for long chain deacylation. Comparing two separately determined co-complex structures containing either a myristoylated peptide or 2'-O-myristoyl-ADP-ribose indicates there are conformational changes at the myristoyl-ribose linkage with minimal structural differences in the enzyme active site. During the deacylation reaction, the fatty acyl group is held in a relatively fixed position. We describe a kinetic and structural model to explain how various Sirtuins display unique acyl substrate preferences and how different reaction kinetics influence NAD(+) dependence. The biological implications are discussed.
Kinetic and Structural Basis for Acyl-Group Selectivity and NAD(+) Dependence in Sirtuin-Catalyzed Deacylation.,Feldman JL, Dittenhafer-Reed KE, Kudo N, Thelen JN, Ito A, Yoshida M, Denu JM Biochemistry. 2015 May 19;54(19):3037-50. doi: 10.1021/acs.biochem.5b00150. Epub , 2015 May 4. PMID:25897714[5]
From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
See Also
References
- ↑ North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol Cell. 2003 Feb;11(2):437-44. PMID:12620231
- ↑ Dryden SC, Nahhas FA, Nowak JE, Goustin AS, Tainsky MA. Role for human SIRT2 NAD-dependent deacetylase activity in control of mitotic exit in the cell cycle. Mol Cell Biol. 2003 May;23(9):3173-85. PMID:12697818
- ↑ Rothgiesser KM, Erener S, Waibel S, Luscher B, Hottiger MO. SIRT2 regulates NF-kappaB dependent gene expression through deacetylation of p65 Lys310. J Cell Sci. 2010 Dec 15;123(Pt 24):4251-8. doi: 10.1242/jcs.073783. Epub 2010 Nov, 16. PMID:21081649 doi:10.1242/jcs.073783
- ↑ Jiang W, Wang S, Xiao M, Lin Y, Zhou L, Lei Q, Xiong Y, Guan KL, Zhao S. Acetylation regulates gluconeogenesis by promoting PEPCK1 degradation via recruiting the UBR5 ubiquitin ligase. Mol Cell. 2011 Jul 8;43(1):33-44. doi: 10.1016/j.molcel.2011.04.028. PMID:21726808 doi:10.1016/j.molcel.2011.04.028
- ↑ Feldman JL, Dittenhafer-Reed KE, Kudo N, Thelen JN, Ito A, Yoshida M, Denu JM. Kinetic and Structural Basis for Acyl-Group Selectivity and NAD(+) Dependence in Sirtuin-Catalyzed Deacylation. Biochemistry. 2015 May 19;54(19):3037-50. doi: 10.1021/acs.biochem.5b00150. Epub , 2015 May 4. PMID:25897714 doi:http://dx.doi.org/10.1021/acs.biochem.5b00150
|